Rapid hormonal modulation of feeding circuit dynamics and its disruption in obesity
喂养回路动态的快速激素调节及其对肥胖的破坏
基本信息
- 批准号:10182404
- 负责人:
- 金额:$ 37.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAnimalsAreaAutomobile DrivingBehavioralBrainBrain StemCaloriesCarbohydratesCell physiologyCellsCellular biologyCommunication impairmentConsumptionDataDevelopmentDietDietary FatsDiphtheria ToxinEatingEnterocytesEnteroendocrine CellFatty acid glycerol estersFeedbackFiberFoodGastrointestinal tract structureGeneticGenetic TechniquesGenetic TranscriptionGlucoseGoalsHigh Fat DietHormonalHormonesHungerHypothalamic structureInfusion proceduresIngestionIntakeKnock-outKnockout MiceKnowledgeMacronutrients NutritionMediatingMediator of activation proteinMetabolicMetabolic DiseasesMetabolismModelingMolecularMonitorMusNeuraxisNeuronsNeurosciencesNucleus solitariusNutrientNutritionalObese MiceObesityOvernutritionPathway interactionsPharmacologyPhotometryPopulationPrevalenceProcessPublic HealthReceptor SignalingRoleSatiationSignal TransductionStimulusStomachStructure of beta Cell of isletStructure of nucleus infundibularis hypothalamiSucroseTestingTissuesVagus nerve structureWeightWorkabsorptionbasecell typecomorbidityconditional knockoutdata integrationepigenomicsexperimental studyfeedinggastric inhibitory polypeptide receptorgastrointestinalgenetic approachglucose metabolismglucose uptakegut-brain axishormonal signalsin vivoincreased appetiteincretin hormoneinsightnovelobesity developmentobesity preventionobesogenicpreferencereceptorrelating to nervous systemresponsesugarsymportertool
项目摘要
PROJECT SUMMARY
Obesity is a staggering public health threat associated with dysregulation of both long-acting homeostatic
feedback that modulates metabolism and satiety, and fast acting signals from the gut driving meal termination.
Excessive consumption of highly processed foods rich in sugar is increasingly implicated in the development of
obesity and its comorbidities. A major gap in our knowledge is to understand how carbohydrate-rich diets
modulate satiation via rapid gut-brain communication in normal weight and obese animals. Using a model I
pioneered to dissect the effects of gastrointestinal nutrient delivery on the in vivo dynamics of hypothalamic
feeding circuits, I previously showed that gastric infusion of macronutrients rapidly inhibits a population of hunger-
promoting neurons in the hypothalamus known as AgRP neurons. This inhibition is proportional to the total
number of calories infused and independent of macronutrient identity, though the molecular mechanisms are
macronutrient specific. More recent data show that obesity induced by a high-fat diet (HFD) results in a selective
decrease in fat-mediated AgRP neuron inhibition, supporting the idea that over-nutrition induces nutrient-specific
changes along the gut-brain axis. However, the molecular mechanisms of AgRP neuron inhibition induced by
carbohydrate ingestion remain largely unknown.
The work proposed here will test several hypotheses to begin addressing this question. Aim 1 uses a combination
of pharmacologic and conditional genetic tools to define a role for rapid post-ingestive hormone release from a
specialized population of gastrointestinal tract-lining cells known as enteroendocrine cells (EECs) in driving
carbohydrate-mediated AgRP neuron inhibition. In addition to defining the specific secreted signals required for
glucose-induced gut-brain communication, we will determine in which tissues and cell types these hormones act
to elicit changes in neural activity. In Aim 2, based upon our results in mice fed a HFD, we will test the hypothesis
that obesity induced by high-carbohydrate diets results in unique changes in the dynamics of gut-brain
communication compared to HFD due to nutrient-specific changes in the transcriptional landscape of EECs.
These studies will close several gaps in our understanding of how carbohydrate intake rapidly modulates feeding
circuit activity. It will clarify the role of key glucose-released gut hormones in mediating these dynamics,
demonstrate where critical hormone signaling is required, and reveal how carbohydrate overconsumption
changes the gut-brain axis at the levels of both neural activity and EEC function. Collectively, the integration of
these data will significantly advance our understanding of how over-nutrition leads to nutrient-specific changes
in critical homeostatic processes. This will ultimately yield novel insights into the treatment and prevention of
obesity.
项目概要
肥胖是一个令人震惊的公共健康威胁,与长效体内平衡失调有关
调节新陈代谢和饱腹感的反馈,以及来自肠道的快速作用信号驱动膳食终止。
过度食用富含糖分的高度加工食品越来越与健康的发展有关。
肥胖及其合并症。我们知识的一个主要差距是了解富含碳水化合物的饮食如何
通过快速肠脑通讯调节正常体重和肥胖动物的饱腹感。使用模型 I
率先剖析胃肠道营养输送对下丘脑体内动态的影响
喂养回路,我之前表明,大量营养素的胃输注可以迅速抑制人群的饥饿-
促进下丘脑中称为 AgRP 神经元的神经元。这种抑制与总抑制成正比
尽管分子机制是
宏量营养素特定。最近的数据表明,高脂饮食(HFD)引起的肥胖会导致选择性的肥胖。
脂肪介导的 AgRP 神经元抑制减少,支持营养过度会导致营养特异性的观点
沿着肠脑轴发生变化。然而,AgRP 神经元抑制的分子机制
碳水化合物的摄入仍然很大程度上未知。
这里提出的工作将测试几个假设来开始解决这个问题。目标 1 使用组合
药理学和条件遗传工具来定义快速摄入后激素释放的作用
胃肠道衬里细胞的特殊群体,称为肠内分泌细胞(EEC),用于驾驶
碳水化合物介导的 AgRP 神经元抑制。除了定义所需的特定分泌信号外
葡萄糖诱导的肠脑通讯,我们将确定这些激素在哪些组织和细胞类型中起作用
引起神经活动的变化。在目标 2 中,根据我们对喂食 HFD 的小鼠的结果,我们将检验假设
高碳水化合物饮食引起的肥胖会导致肠脑动力学的独特变化
与 HFD 相比,由于 EEC 转录景观中的营养特异性变化,通讯发生了变化。
这些研究将弥补我们对碳水化合物摄入如何快速调节喂养的理解上的一些差距
电路活动。它将阐明关键的葡萄糖释放肠道激素在调节这些动态中的作用,
展示哪里需要关键的激素信号传导,并揭示碳水化合物如何过度消耗
在神经活动和 EEC 功能水平上改变肠脑轴。总的来说,整合
这些数据将极大地促进我们对营养过剩如何导致特定营养变化的理解
在关键的稳态过程中。这最终将为治疗和预防带来新的见解
肥胖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa R Beutler其他文献
Lisa R Beutler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa R Beutler', 18)}}的其他基金
Rapid hormonal modulation of feeding circuit dynamics and its disruption in obesity
喂养回路动态的快速激素调节及其对肥胖的破坏
- 批准号:
10557237 - 财政年份:2021
- 资助金额:
$ 37.41万 - 项目类别:
Rapid hormonal modulation of feeding circuit dynamics and its disruption in obesity
喂养回路动态的快速激素调节及其对肥胖的破坏
- 批准号:
10359828 - 财政年份:2021
- 资助金额:
$ 37.41万 - 项目类别:
Dissecting the Nutritional Regulation of Feeding Circuits
剖析喂养回路的营养调节
- 批准号:
9984041 - 财政年份:2019
- 资助金额:
$ 37.41万 - 项目类别:
Dissecting the Nutritional Regulation of Feeding Circuits
剖析喂养回路的营养调节
- 批准号:
9908071 - 财政年份:2019
- 资助金额:
$ 37.41万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别: