Rapid hormonal modulation of feeding circuit dynamics and its disruption in obesity
喂养回路动态的快速激素调节及其对肥胖的破坏
基本信息
- 批准号:10182404
- 负责人:
- 金额:$ 37.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAnimalsAreaAutomobile DrivingBehavioralBrainBrain StemCaloriesCarbohydratesCell physiologyCellsCellular biologyCommunication impairmentConsumptionDataDevelopmentDietDietary FatsDiphtheria ToxinEatingEnterocytesEnteroendocrine CellFatty acid glycerol estersFeedbackFiberFoodGastrointestinal tract structureGeneticGenetic TechniquesGenetic TranscriptionGlucoseGoalsHigh Fat DietHormonalHormonesHungerHypothalamic structureInfusion proceduresIngestionIntakeKnock-outKnockout MiceKnowledgeMacronutrients NutritionMediatingMediator of activation proteinMetabolicMetabolic DiseasesMetabolismModelingMolecularMonitorMusNeuraxisNeuronsNeurosciencesNucleus solitariusNutrientNutritionalObese MiceObesityOvernutritionPathway interactionsPharmacologyPhotometryPopulationPrevalenceProcessPublic HealthReceptor SignalingRoleSatiationSignal TransductionStimulusStomachStructure of beta Cell of isletStructure of nucleus infundibularis hypothalamiSucroseTestingTissuesVagus nerve structureWeightWorkabsorptionbasecell typecomorbidityconditional knockoutdata integrationepigenomicsexperimental studyfeedinggastric inhibitory polypeptide receptorgastrointestinalgenetic approachglucose metabolismglucose uptakegut-brain axishormonal signalsin vivoincreased appetiteincretin hormoneinsightnovelobesity developmentobesity preventionobesogenicpreferencereceptorrelating to nervous systemresponsesugarsymportertool
项目摘要
PROJECT SUMMARY
Obesity is a staggering public health threat associated with dysregulation of both long-acting homeostatic
feedback that modulates metabolism and satiety, and fast acting signals from the gut driving meal termination.
Excessive consumption of highly processed foods rich in sugar is increasingly implicated in the development of
obesity and its comorbidities. A major gap in our knowledge is to understand how carbohydrate-rich diets
modulate satiation via rapid gut-brain communication in normal weight and obese animals. Using a model I
pioneered to dissect the effects of gastrointestinal nutrient delivery on the in vivo dynamics of hypothalamic
feeding circuits, I previously showed that gastric infusion of macronutrients rapidly inhibits a population of hunger-
promoting neurons in the hypothalamus known as AgRP neurons. This inhibition is proportional to the total
number of calories infused and independent of macronutrient identity, though the molecular mechanisms are
macronutrient specific. More recent data show that obesity induced by a high-fat diet (HFD) results in a selective
decrease in fat-mediated AgRP neuron inhibition, supporting the idea that over-nutrition induces nutrient-specific
changes along the gut-brain axis. However, the molecular mechanisms of AgRP neuron inhibition induced by
carbohydrate ingestion remain largely unknown.
The work proposed here will test several hypotheses to begin addressing this question. Aim 1 uses a combination
of pharmacologic and conditional genetic tools to define a role for rapid post-ingestive hormone release from a
specialized population of gastrointestinal tract-lining cells known as enteroendocrine cells (EECs) in driving
carbohydrate-mediated AgRP neuron inhibition. In addition to defining the specific secreted signals required for
glucose-induced gut-brain communication, we will determine in which tissues and cell types these hormones act
to elicit changes in neural activity. In Aim 2, based upon our results in mice fed a HFD, we will test the hypothesis
that obesity induced by high-carbohydrate diets results in unique changes in the dynamics of gut-brain
communication compared to HFD due to nutrient-specific changes in the transcriptional landscape of EECs.
These studies will close several gaps in our understanding of how carbohydrate intake rapidly modulates feeding
circuit activity. It will clarify the role of key glucose-released gut hormones in mediating these dynamics,
demonstrate where critical hormone signaling is required, and reveal how carbohydrate overconsumption
changes the gut-brain axis at the levels of both neural activity and EEC function. Collectively, the integration of
these data will significantly advance our understanding of how over-nutrition leads to nutrient-specific changes
in critical homeostatic processes. This will ultimately yield novel insights into the treatment and prevention of
obesity.
项目摘要
肥胖是与长效稳态失调相关的惊人的公共卫生威胁
调节新陈代谢和饱腹感的反馈,以及来自肠道驱动餐点的快速表演信号。
过度食用富含糖的高度加工食品越来越涉及
肥胖及其合并症。我们所知的一个主要差距是了解碳水化合物富含饮食的方式
通过正常体重和肥胖动物中的快速肠脑通信来调节满足。使用模型i
开创性剖析胃肠道营养递送对下丘脑体内动态的影响
喂养电路,我先前表明,大量营养素的胃输注迅速抑制了饥饿的种群
在称为AGRP神经元的下丘脑中促进神经元。这种抑制与总数成正比
尽管分子机制是
大量营养特异性。最近的数据表明,高脂饮食(HFD)诱导的肥胖导致选择性
减少脂肪介导的AGRP神经元抑制作用,支持过度营养诱导营养特异性的观念
沿肠道轴变化。但是,AgRP神经元抑制的分子机制
碳水化合物的摄入在很大程度上仍然未知。
这里提出的工作将检验一些假设,以开始解决这个问题。 AIM 1使用组合
药理学和有条件的遗传工具,以定义从A
驱动胃肠道细胞的专业人群被称为肠内分泌细胞(EEC)
碳水化合物介导的AGRP神经元抑制。除了定义所需的特定分泌信号
葡萄糖引起的肠道通信,我们将确定这些激素的组织和细胞类型
引起神经活动的变化。在AIM 2中,根据我们在HFD喂养的小鼠中的结果,我们将检验假设
高碳水化合物饮食引起的肥胖导致肠道动力学的独特变化
与HFD相比,由于EEC的转录景观的营养特异性变化而导致的HFD相比。
这些研究将缩小我们对碳水化合物摄入量如何快速调节喂养的几个差距
电路活动。它将阐明关键葡萄糖释放的肠激素在介导这些动力学中的作用,
证明需要临界激素信号的位置,并揭示碳水化合物的过度消费
在神经活动和EEC功能的水平上更改肠道轴。共同的整合
这些数据将大大提高我们对过度营养如何导致营养特异性变化的理解
在关键的稳态过程中。这最终将产生有关治疗和预防的新颖见解
肥胖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa R Beutler其他文献
Lisa R Beutler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa R Beutler', 18)}}的其他基金
Rapid hormonal modulation of feeding circuit dynamics and its disruption in obesity
喂养回路动态的快速激素调节及其对肥胖的破坏
- 批准号:
10557237 - 财政年份:2021
- 资助金额:
$ 37.41万 - 项目类别:
Rapid hormonal modulation of feeding circuit dynamics and its disruption in obesity
喂养回路动态的快速激素调节及其对肥胖的破坏
- 批准号:
10359828 - 财政年份:2021
- 资助金额:
$ 37.41万 - 项目类别:
Dissecting the Nutritional Regulation of Feeding Circuits
剖析喂养回路的营养调节
- 批准号:
9984041 - 财政年份:2019
- 资助金额:
$ 37.41万 - 项目类别:
Dissecting the Nutritional Regulation of Feeding Circuits
剖析喂养回路的营养调节
- 批准号:
9908071 - 财政年份:2019
- 资助金额:
$ 37.41万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别: