Therapeutic Engineered Stem Cells as a New Adjuvant Therapy for Non-Small Cell Lung Cancer Brain Metastases
治疗性工程干细胞作为非小细胞肺癌脑转移的新辅助疗法
基本信息
- 批准号:9982039
- 负责人:
- 金额:$ 3.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-11 至 2023-07-10
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAdjuvant TherapyAftercareAllogenicApoptosisAreaAutologousAutopsyBasic ScienceBedsBiological AssayBrainBrain NeoplasmsCell LineCellsCessation of lifeChemotherapy and/or radiationClinicClinicalCoculture TechniquesCombined Modality TherapyCranial IrradiationCytotoxic agentDevelopmentDiagnosisDiseaseDistantDistant MetastasisDrug Delivery SystemsDrug TargetingEffectivenessEngineeringEnsureEvaluationFibroblastsFoundationsGenesGenetic EngineeringGlioblastomaHarvestHeterogeneityHome environmentHomingHumanHuman EngineeringHypoxiaImmune responseImmune systemImplantIn VitroInjectionsInnovative TherapyLesionLigandsLocationMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of lungMentorsMetastatic malignant neoplasm to brainMethodsMicrometastasisModelingMusNecrosisNon-Small-Cell Lung CarcinomaNonmetastaticOptical reporterPathway interactionsPatientsProcessProductionPropertyProteinsRadiationRadiation therapyRadiosurgeryRecurrenceRegimenResearchResidual stateResistanceRiskSignal TransductionSolidSubfamily lentivirinaeTNF geneTestingTherapeuticTherapeutic AgentsTherapeutic EffectTrainingTranslatingTreatment ProtocolsTumor Stem CellsTumor VolumeWorkbioluminescence imagingcancer cellchemokinecombatcombinatorialcytokinecytotoxicengineered stem cellsimprovedin vivomigrationmortalitymouse modelneoplastic cellnerve stem cellnovel therapeuticsoptimal treatmentspreventrapid techniqueresponsesingle cell mRNA sequencingsingle-cell RNA sequencingstandard of carestem cell therapytargeted treatmenttherapy resistanttranscription factortreatment optimizationtumortumor heterogeneity
项目摘要
This page contains proprietary information. Please do not distribute for any purposes other than evaluation and review.
PROJECT SUMMARY/ABSTRACT
Lung cancer is the most common primary cancer to spread to the brain. The median survival for patients with
non-small cell lung cancer (NSCLC) brain metastases is about 4 months. While radiotherapy remains a first-
line treatment for patients with multiple brain metastases, recurrence is observed in over 40% of patients. A
new therapeutic agent is desperately needed in order to find and eradicate these remaining brain
micrometastases post-radiotherapy. To address this need, we propose using neural stem cells (NSCs) as a
targeted drug delivery system to scavenge for remaining lung cancer micrometastases in the brain after
radiotherapy. NSCs have demonstrated a remarkable, innate ability to selectively migrate to tumors. When
programmed to produce cytotoxic proteins, NSCs have been proven to migrate to and kill glioblastoma tumors.
Despite the promise of NSCs for tumor-targeted treatment, NSCs have proven difficult to harvest. Allogeneic
cells activate the immune response, promote clearance of NSCs, and decrease their therapeutic window.
Autologous NSCs are needed to avoid this immune response but are impractical to collect due to location and
quantities found in the brain. In order to combat this problem, we have previously developed a method of
rapidly transdifferentiating human fibroblasts into induced neural stem cells (hiNSCs) using a lentivirus
containing the gene to induce expression of the multipotency transcription factor, Sox2. The hiNSCs are a
personalized, tumor-homing therapeutic cell line. However, previous research surrounding hiNSCs has
focused on the treatment of primary brain cancer. This work will be the first to investigate hiNSCs as a method
of eradicating far-reaching NSCLC micrometastases found in the brain. Moreover, we will combine this
innovative therapy with well-established radiotherapy regimens in order to develop a model that reflects current
treatment regimens. In order to assess the potential of therapeutic hiNSCs as an adjuvant treatment for
NSCLC brain micrometastases, we will perform treatment optimization in vitro, use in vivo studies to determine
the migration, persistence, and efficacy of hiNSC following radiotherapy, and single-cell mRNA sequencing to
elucidate tumor and tumor bed heterogeneity, particularly regarding sensitization or resistance, that occurs
after this combination therapy. If successful, this will be important foundational work in the development of a
new, much-needed therapeutic agent to scavenge for NSCLC micrometastases remaining after radiotherapy,
thus reducing the risk of tumor recurrence and decreasing the mortality of NSCLC.
此页面包含专有信息。除评估和审查外,请不要出于任何目的分发。
项目摘要/摘要
肺癌是传播到大脑的最常见的原发性癌症。患者的中位生存期
非小细胞肺癌(NSCLC)脑转移约为4个月。放疗仍然是首先
超过40%的患者观察到多种脑转移患者的线治疗,复发。一个
迫切需要新的治疗剂才能找到和消除这些剩余的大脑
微量转移疗法后。为了满足这一需求,我们建议将神经干细胞(NSC)用作
有针对性的药物输送系统清除大脑中剩余的肺癌微转移
放疗。 NSC表现出具有选择性迁移到肿瘤的显着,天生的能力。什么时候
已被编程以产生细胞毒性蛋白,NSC已被证明可以迁移并杀死胶质母细胞瘤肿瘤。
尽管NSC有望接受以肿瘤为目标的治疗,但NSC已被证明很难收获。同种异体
细胞激活免疫反应,促进NSC的清除并减少其治疗窗口。
需要自体NSC来避免这种免疫反应,但由于位置和
大脑中发现的数量。为了解决这个问题,我们以前已经开发了一种
使用慢病毒病毒将人的成纤维细胞迅速转变为诱导的神经干细胞(HINSC)
包含基因诱导多能转录因子SOX2的表达。 HINSC是一个
个性化的,肿瘤的治疗细胞系。但是,以前围绕HINSC的研究
专注于治疗原发性脑癌。这项工作将是第一个作为一种方法调查HINSC的工作
消除大脑中发现的深远NSCLC微型转移。而且,我们将结合起来
具有完善的放射治疗方案的创新疗法,以开发一个反映当前的模型
治疗方案。为了评估治疗性HINSC作为辅助治疗的潜力
NSCLC脑微转移酶,我们将在体外进行治疗优化,在体内研究中确定
放疗后HINSC的迁移,持久性和功效,以及单细胞mRNA测序
阐明肿瘤和肿瘤床异质性,尤其是在敏化或抵抗方面
在这种组合疗法之后。如果成功,这将是发展的重要基础工作
新的,急需的治疗剂,清除放射疗法后剩余的NSCLC微型转移,
从而降低了肿瘤复发的风险并降低了NSCLC的死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison R. Mercer-Smith其他文献
Alison R. Mercer-Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison R. Mercer-Smith', 18)}}的其他基金
Therapeutic Engineered Stem Cells as a New Adjuvant Therapy for Non-Small Cell Lung Cancer Brain Metastases
治疗性工程干细胞作为非小细胞肺癌脑转移的新辅助疗法
- 批准号:
10202509 - 财政年份:2019
- 资助金额:
$ 3.7万 - 项目类别:
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 3.7万 - 项目类别:
Develop Conditionally Armored CAR Macrophage Therapy for Pancreatic Cancer
开发针对胰腺癌的条件装甲 CAR 巨噬细胞疗法
- 批准号:
10710883 - 财政年份:2023
- 资助金额:
$ 3.7万 - 项目类别:
Sonodynamic therapy using MRI-guided focused ultrasound in combination with 5-aminolevulinic acid to treat recurrent glioblastoma multiforme
使用 MRI 引导聚焦超声联合 5-氨基乙酰丙酸的声动力疗法治疗复发性多形性胶质母细胞瘤
- 批准号:
10699858 - 财政年份:2023
- 资助金额:
$ 3.7万 - 项目类别:
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 3.7万 - 项目类别: