Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
基本信息
- 批准号:9980927
- 负责人:
- 金额:$ 104.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdhesionsAffectBiochemicalBiologicalBiophysicsCell CycleCell Cycle RegulationCell Differentiation processCell LineCell PolarityCell ShapeCell membraneCell physiologyCellsChemicalsChimeric ProteinsCholesterol HomeostasisClathrinComplementComplexEndocytosisEnvironmentEventFimbrinGenerationsGeneticGrowth FactorKnowledgeLabelLipidsMaintenanceMalignant NeoplasmsMammalian CellMammalsMechanicsMediatingMembraneMonitorMyosin S-1Normal CellOrganellesPathologicPathway interactionsPermeabilityPhenotypePhosphorylationPlayProcessProductionProteinsRegulationRoleSaccharomycetalesSignal TransductionSiteStructureVesicleWorkYeastsblood pressure regulationcell motilityfluorescence imaginggenome editinglive cell imagingnormal hearingpathogenpreventpublic health relevancerecruitstem cellstissue cultureuptake
项目摘要
DESCRIPTION (provided by applicant): Studies on the mechanisms and regulation of clathrin-mediated endocytosis (CME) and actin force generation during CME, and their critical importance to cell function in both budding yeast and mammalian cells, are proposed. Actin functions in countless processes including cell motility, organelle transport, adhesion, contractility, cell shape, cell polarity, and maintenance of membrane tension and cell mechanical rigidity. Significant gaps exist in knowledge of actin mechanisms and assembly regulation. Two key questions concerning actin regulation and function will be addressed in studies of budding yeast: (1) How does the cell cycle regulate actin cable assembly? (2) How do type 1 myosin and the Arp2/3 complex work together to create forces that generate membrane curvature? For the former studies, recent observation that fimbrin phosphorylation by Clb2/Cdk1 is crucial for cell cycle regulation of actin assembly will be leveraged to develop a mechanistic understanding of how actin assembly is regulated in the cell cycle. For the latter studies, in- depth biochemical, biophysical, genetic, and cell biological approaches will be combined to determine how type 1 myosins contribute to force production by Arp2/3-nucleated actin networks during CME. CME is responsible for uptake of molecules from a cell's environment through the permeability barrier of the plasma membrane, and therefore, is crucial for determining how cells respond to their surroundings. Many proteins and lipids that mediate CME have been identified, and their functions determined biochemically and in cells. Live cell imaging of fluorescently labeled CME proteins has revealed the intricate recruitment timing and order for some 60 CME proteins. However, how cargo capture is coordinated with vesicle formation, how correct protein recruitment order and timing are achieved, which events and molecules play critical roles in the pathway, and how forces curve the membrane and drive vesicle scission, are not fully understood. The following key questions will be addressed in budding yeast and mammalian cells: How are CME site initiation and maturation regulated? What activities are essential for CME vesicle formation? Does a checkpoint monitor CME? What biophysical principles govern CME? What are actin's endocytic functions and how are they regulated? How do chemical and physical parameters affect CME dynamics and efficiency? How does CME change during cellular differentiation? Mammalian cell studies will be conducted on over 80 stable tissue culture and stem cell lines generated using genome editing to express CME proteins as fluorescent protein fusions at native, endogenous levels. Effects of cell differentiation on CME dynamics and efficiency will be conducted in the genome-edited stem cells. Because CME proteins are highly conserved in structure and function, principles learned from studies of yeast and mammals will each complement and inform the other and provide a comprehensive mechanistic understanding that neither alone could generate.
描述(由申请人提供):提出了关于网格蛋白介导的内吞作用(CME)和CME过程中肌动蛋白力产生的机制和调节,以及它们对芽殖酵母和哺乳动物细胞的细胞功能的至关重要的研究。肌动蛋白机制和组装的知识存在显着差距,包括细胞运动、细胞器运输、粘附、收缩性、细胞形状、细胞极性以及膜张力和细胞机械刚性的维持。芽殖酵母的研究将解决有关肌动蛋白调节和功能的两个关键问题:(1)细胞周期如何调节肌动蛋白电缆组装?(2)1 型肌球蛋白和 Arp2/3 复合物如何协同工作以产生肌动蛋白电缆。对于之前的研究,最近观察到 Clb2/Cdk1 的纤维蛋白磷酸化对于肌动蛋白组装的细胞周期调节至关重要,这将有助于发展对肌动蛋白组装方式的机制理解对于后者的研究,将结合深入的生物化学、生物物理、遗传和细胞生物学方法来确定 1 型肌球蛋白如何在 CME 期间促进 Arp2/3 有核肌动蛋白网络的力量产生。负责通过质膜的渗透性屏障从细胞环境中摄取分子,因此对于确定细胞如何对其周围环境做出反应至关重要,许多介导 CME 的蛋白质和脂质及其它们已被识别。荧光标记的 CME 蛋白的活细胞成像揭示了约 60 种 CME 蛋白复杂的募集时间和顺序,然而,货物捕获如何与囊泡形成相协调,如何实现正确的蛋白质募集顺序和时间,哪些事件和分子在该途径中发挥关键作用,以及力如何弯曲膜并驱动囊泡分裂,尚未完全了解以下关键问题将在出芽酵母和哺乳动物细胞中得到解决:CME位点如何启动和成熟。哪些活动对于 CME 囊泡形成至关重要?哪些生物物理原理控制着 CME?它们的化学和物理参数如何影响 CME 的动态和效率?哺乳动物细胞研究将在 80 多种稳定的组织培养物和干细胞系上进行,这些细胞系是通过基因组编辑产生的,以天然、内源水平表达 CME 蛋白作为荧光蛋白融合体。关于 CME 动力学和效率的研究将在基因组编辑的干细胞中进行,因为 CME 蛋白在结构和功能上高度保守,从酵母和哺乳动物的研究中学到的原理将相互补充和告知,并提供全面的机制理解。单独可以产生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID G DRUBIN其他文献
DAVID G DRUBIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID G DRUBIN', 18)}}的其他基金
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
- 批准号:
10434883 - 财政年份:2016
- 资助金额:
$ 104.93万 - 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
- 批准号:
10166490 - 财政年份:2016
- 资助金额:
$ 104.93万 - 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
- 批准号:
10676743 - 财政年份:2016
- 资助金额:
$ 104.93万 - 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
- 批准号:
10575884 - 财政年份:2016
- 资助金额:
$ 104.93万 - 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
- 批准号:
9071612 - 财政年份:2016
- 资助金额:
$ 104.93万 - 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
- 批准号:
9276734 - 财政年份:2016
- 资助金额:
$ 104.93万 - 项目类别:
PROTEIN COMPOSITION OF ACTIN TAILS ASSEMBLED IN YEAST EXTRACTS
酵母提取物中组装的肌动蛋白尾部的蛋白质组成
- 批准号:
8365818 - 财政年份:2011
- 资助金额:
$ 104.93万 - 项目类别:
ENDOCYTOSIS AND CELL CYCLE IN SACCHAROMYCES CEREVISIAE
酿酒酵母的内吞作用和细胞周期
- 批准号:
8362731 - 财政年份:2011
- 资助金额:
$ 104.93万 - 项目类别:
KINETOCHORE PROTEIN INTERACTIONS AND THEIR REGULATORY KINASES
动粒蛋白相互作用及其调节激酶
- 批准号:
8171310 - 财政年份:2010
- 资助金额:
$ 104.93万 - 项目类别:
IDENTIFICATION OF NOVEL MEMBERS OF S CEREVISIAE CYTOKINESIS APPARATUS
酿酒酵母细胞分裂装置新成员的鉴定
- 批准号:
8171447 - 财政年份:2010
- 资助金额:
$ 104.93万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 104.93万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 104.93万 - 项目类别:
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 104.93万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 104.93万 - 项目类别: