Optimizing Cancer Immunotherapy Safety and Efficacy using Genome Editing

使用基因组编辑优化癌症免疫治疗的安全性和有效性

基本信息

项目摘要

The adoptive transfer of lymphocytes engineered to recognize tumor cells has shown tremendous promise in patients with relapsed or refractory B cell malignancies. In this approach, patient derived T cells are programmed in vitro with engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs) that have affinity for cancer- or lineage-specific antigens. Subsequent autologous reinfusion of the engineered T cells enables tumor targeting and eradication. More recently, genome editing approaches have been proposed to improve engineered T cell performance by knocking out genes that mediate graft-versus-host disease (for allogeneic transfer), that are involved in tumor-mediated suppression of T cell efficacy, or that are recognized by potent clinically relevant monoclonal antibodies. However, to this point no robust characterization of genome editing efficiency or specificity has been performed in T cells. Much of my postdoctoral work has focused on developing methods to characterize and improve the utility and genome-wide specificity of CRISPR-Cas nucleases, making me uniquely suited to address this largely outstanding question. The primary aims of this proposal are therefore: 1) to characterize and optimize the efficiency and specificity of genome editing in T cells, 2) utilize genome editing to improve processes involved in T cell engineering, and 3) leverage CRISPR-Cas screens to enhance the overall efficacy of engineered T cells. The proposed research will provide considerable insight into the feasibility of implementing genome editing strategies in T cells as a means to improve tumor killing efficacy, persistence, or manufacturing. Significant findings relevant to the fields of cancer immunotherapy, cancer biology, genome editing, and gene therapy are expected. Areas of additional scientific training that will enable successful completion of this proposal are knowledge of T cell biology and immunology, mentorship on in vivo cancer modeling in mice, and experience implementing genome-wide CRISPR-Cas screens. The mentored phase of the award will be supported by Dr. Keith Joung, a world-leader in genome editing technology development, and by Dr. Marcela Maus, an expert in cancer immunotherapy. Dr. Joung, Dr. Maus, and nearly all other senior/key personnel of this project are located at the Massachusetts General Hospital or in the greater Boston scientific community. Professional and career development activities will include training in mentorship, responsible conduct of research, grantsmanship, finance, and conflict of interest among other topics. National and international meetings will continue to be attended to disseminate findings from the proposed research. The academic and professional development environment at the Massachusetts General Hospital and Harvard Medical School, combined with a top level mentorship team and scientific advisory committee, will offer the best opportunity for further training as I transition to independence.
旨在识别肿瘤细胞的淋巴细胞的过继转移在以下领域显示出巨大的前景: 患有复发性或难治性 B 细胞恶性肿瘤的患者。在这种方法中,患者来源的 T 细胞被编程 在体外使用对癌症具有亲和力的工程化 T 细胞受体 (TCR) 或嵌合抗原受体 (CAR) 或谱系特异性抗原。随后自体回输工程化 T 细胞可实现肿瘤靶向 和消灭。最近,基因组编辑方法被提出来改善工程 T 细胞 通过敲除介导移植物抗宿主病(用于同种异体转移)的基因来实现性能,这些基因是 参与肿瘤介导的 T 细胞功效抑制,或被有效的临床相关性所认可 单克隆抗体。然而,到目前为止,还没有对基因组编辑效率或基因组编辑效率的可靠表征。 特异性已在 T 细胞中进行。我的大部分博士后工作都集中在开发方法 表征并提高 CRISPR-Cas 核酸酶的实用性和全基因组特异性,使我独一无二 适合解决这个很大程度上悬而未决的问题。因此,本提案的主要目标是: 1) 表征和优化 T 细胞基因组编辑的效率和特异性,2) 利用基因组编辑 改进 T 细胞工程的流程,以及 3) 利用 CRISPR-Cas 筛选来增强整体 工程化 T 细胞的功效。拟议的研究将为我们的可行性提供深入的见解 在 T 细胞中实施基因组编辑策略作为提高肿瘤杀伤功效、持久性或 制造业。与癌症免疫治疗、癌症生物学、基因组领域相关的重大发现 编辑和基因治疗有望实现。有助于成功的额外科学培训领域 该提案的完成包括 T 细胞生物学和免疫学知识以及体内癌症指导 小鼠建模,并拥有实施全基因组 CRISPR-Cas 筛选的经验。指导阶段 该奖项将得到基因组编辑技术开发领域的世界领先者 Keith Joung 博士的支持,以及 由癌症免疫治疗专家 Marcela Maus 博士撰写。 Joung 博士、Maus 博士以及几乎所有其他高级/关键人员 该项目的人员位于马萨诸塞州总医院或大波士顿科学中心 社区。专业和职业发展活动将包括指导培训、责任培训 研究行为、资助、财务和其他主题中的利益冲突。国家和 将继续出席国际会议,传播拟议研究的结果。这 马萨诸塞州总医院和哈佛大学的学术和专业发展环境 医学院与顶级导师团队和科学顾问委员会相结合,将提供最好的 当我过渡到独立时,有机会接受进一步的培训。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs.
  • DOI:
    10.1038/s41551-017-0178-6
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    28.1
  • 作者:
    Listgarten J;Weinstein M;Kleinstiver BP;Sousa AA;Joung JK;Crawford J;Gao K;Hoang L;Elibol M;Doench JG;Fusi N
  • 通讯作者:
    Fusi N
Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize.
  • DOI:
    10.1111/pbi.12982
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Lee K;Zhang Y;Kleinstiver BP;Guo JA;Aryee MJ;Miller J;Malzahn A;Zarecor S;Lawrence-Dill CJ;Joung JK;Qi Y;Wang K
  • 通讯作者:
    Wang K
Plant genome editing branches out.
  • DOI:
    10.1038/s41477-020-00840-7
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    18
  • 作者:
    Hille, Logan T.;Kleinstiver, Benjamin P.
  • 通讯作者:
    Kleinstiver, Benjamin P.
enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Peter Kleinstiver其他文献

Benjamin Peter Kleinstiver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Peter Kleinstiver', 18)}}的其他基金

Scalable Development of Custom Genome Editing Technologies
定制基因组编辑技术的可扩展开发
  • 批准号:
    10472972
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
  • 批准号:
    10555024
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
  • 批准号:
    10596047
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
  • 批准号:
    10637323
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Applying Population Management Best Practices to Preventive Genomic Medicine
将人口管理最佳实践应用于预防性基因组医学
  • 批准号:
    10674202
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了