Multiscale modeling of inherited cardiomyopathies and therapeutic interventions
遗传性心肌病的多尺度建模和治疗干预
基本信息
- 批准号:9980457
- 负责人:
- 金额:$ 64.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-03 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
The goal of this research is to develop a predictive multiscale model that will improve understanding of familial
cardiomyopathies and that can be used to help screen potential new therapies for cardiac disease. Familial
cardiomyopathies are the most frequently inherited heart defect and affect about 700,000 Americans. Most of
the genetic mutations affect myosin or regulatory proteins that modulate myosin function. The majority of these
mutations also induce abnormal cardiac growth termed hypertrophy. This project will develop, calibrate, and
validate an innovative multiscale model that uses data quantifying myosin-level function to predict how hearts
hypertrophy over time. This is a critical step on the path to developing patient-specific computer models that can
be used to optimize treatments for heart failure and to predict the effects of different types of pharmaceutical
intervention. In the future, one could envision clinicians testing drug treatments in silico and selecting the
intervention that produces the greatest long-term benefit for their patient.
The research team consists of two physiologists/biophysicists (Campbell & Yengo) and two engineers (Wenk &
Lee) who share a common interest in cardiac biology. Together, their research skills span from structure-function
analysis of myosin molecules to computer simulations of hearts that grow and remodel over time. The research
plan integrates state-of-the-art hierarchically-coupled mathematical models with validation experiments that
range from stopped-flow molecular kinetic assays to magnetic resonance imaging of myocardial strain patterns.
The model will be tested using molecular to organ-level experimental data obtained from wild-type mice and from
transgenic animals that develop cardiac hypertrophy because of a K104E mutation in myosin regulatory light
chain. Additional tests will be performed using drugs that enhance (omecamtiv mecarbil) and inhibit (MYK-461)
myosin-level contractile function.
There are three specific aims.
Aim 1: Integrate a multistate kinetic model of myosin into an organ-level finite framework to predict the effects of
genetic and/or pharmaceutical modulation of myosin function.
Aim 2: Develop growth and remodeling algorithms to predict chronic changes in ventricular structure and function
resulting from genetic and/or pharmaceutical modulation of myosin function.
Aim 3: Calibrate and validate the model using experimental data quantifying different spatial and temporal scales.
抽象的
这项研究的目的是开发一个预测性的多尺度模型,以提高对家族的理解
心肌病,可用于帮助筛查潜在的心脏病疗法。家族
心肌病是最常见的心脏缺陷,影响约70万美国人。大多数
遗传突变会影响调节肌球蛋白功能的肌球蛋白或调节蛋白。其中大多数
突变还诱导异常的心脏生长称为肥大。这个项目将开发,校准,并且
验证一种创新的多尺度模型,该模型使用量化肌球蛋白级功能的数据来预测心脏
随着时间的推移肥大。这是开发特定于患者的计算机模型的路径的关键步骤
用于优化心力衰竭的治疗方法,并预测不同类型的药物的影响
干涉。将来,可以设想临床医生在硅中测试药物治疗并选择
干预为患者带来最大的长期利益。
研究小组由两名生理学家/生物物理学家(Campbell&Yengo)和两名工程师组成(Wenk&
Lee)在心脏生物学上有共同的兴趣。他们的研究技能跨越结构功能
分析肌球蛋白分子对随着时间的推移而生长和重塑的心脏的计算机模拟。研究
计划将最先进的层次结合耦合数学模型与验证实验进行
范围从停止流量分子动力学测定到心肌应变模式的磁共振成像。
该模型将使用从野生型小鼠获得的分子至器官级实验数据进行测试
由于肌球蛋白调节光中的K104E突变,会发展心脏肥大的转基因动物
链。将使用增强的药物(Omecamtiv Mecarbil)进行其他测试并抑制(Myk-461)
肌球蛋白级收缩功能。
有三个特定的目标。
AIM 1:将肌球蛋白的多态动力学模型整合到器官水平的有限框架中,以预测
肌球蛋白功能的遗传和/或药物调节。
目标2:发展生长和重塑算法以预测心室结构和功能的慢性变化
肌球蛋白功能的遗传和/或药物调节导致。
AIM 3:使用实验数据量化不同的空间和时间尺度的实验数据校准和验证模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Kenneth S Campbell其他文献
Unfolded Von Willebrand Factor Interacts with Protein S and Limits Its Anticoagulant Activity
- DOI:10.1182/blood-2022-16261210.1182/blood-2022-162612
- 发表时间:2022-11-152022-11-15
- 期刊:
- 影响因子:
- 作者:Martha MS Sim;Hammodah Alfar;Melissa Hollifield;Dominic W. Chung;Xiaoyun Fu;Meenakshi Banerjee;Chi Peng;Xian Li;Alice Thornton;James Z Porterfield;Jamie Sturgill;Gail A Sievert;Marietta Barton-Baxter;Kenneth S Campbell;Jerold G Woodward;José A. López;Sidney W Whiteheart;Beth A Garvy;Jeremy P WoodMartha MS Sim;Hammodah Alfar;Melissa Hollifield;Dominic W. Chung;Xiaoyun Fu;Meenakshi Banerjee;Chi Peng;Xian Li;Alice Thornton;James Z Porterfield;Jamie Sturgill;Gail A Sievert;Marietta Barton-Baxter;Kenneth S Campbell;Jerold G Woodward;José A. López;Sidney W Whiteheart;Beth A Garvy;Jeremy P Wood
- 通讯作者:Jeremy P WoodJeremy P Wood
共 1 条
- 1
Kenneth S Campbell的其他基金
Carol Act Supplement to Data-driven optimization of therapy for heart failure
卡罗尔法案对数据驱动的心力衰竭治疗优化的补充
- 批准号:1085120610851206
- 财政年份:2022
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Data-driven optimization of therapy for heart failure
数据驱动的心力衰竭治疗优化
- 批准号:1046727710467277
- 财政年份:2022
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Data-driven optimization of therapy for heart failure
数据驱动的心力衰竭治疗优化
- 批准号:1061514310615143
- 财政年份:2022
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Dual filament control of myocardial power and hemodynamics
心肌功率和血流动力学的双丝控制
- 批准号:1024529010245290
- 财政年份:2020
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Dual filament control of myocardial power and hemodynamics
心肌功率和血流动力学的双丝控制
- 批准号:1047265510472655
- 财政年份:2020
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Length-dependent activation in human myocardium
人类心肌的长度依赖性激活
- 批准号:1046822610468226
- 财政年份:2020
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Dual filament control of myocardial power and hemodynamics
心肌功率和血流动力学的双丝控制
- 批准号:1067242210672422
- 财政年份:2020
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Length-dependent activation in human myocardium
人类心肌的长度依赖性激活
- 批准号:1067892610678926
- 财政年份:2020
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Length-dependent activation in human myocardium
人类心肌的长度依赖性激活
- 批准号:1025988110259881
- 财政年份:2020
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Multiscale modeling of inherited cardiomyopathies and therapeutic interventions
遗传性心肌病的多尺度建模和治疗干预
- 批准号:1022392210223922
- 财政年份:2017
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:1082573710825737
- 财政年份:2023
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:1073814410738144
- 财政年份:2023
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:1074102210741022
- 财政年份:2023
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
- 批准号:1065857610658576
- 财政年份:2023
- 资助金额:$ 64.48万$ 64.48万
- 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:1072404810724048
- 财政年份:2023
- 资助金额:$ 64.48万$ 64.48万
- 项目类别: