CPS: Cyber-physically assistive clothing to reduce societal incident of low back pain
CPS:网络物理辅助服装可减少腰痛的社会事件
基本信息
- 批准号:9979852
- 负责人:
- 金额:$ 31.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBackBack InjuriesBack PainBiologicalBiomechanicsClinicalClinical ManagementClothingCumulative Trauma DisordersDataData SetEnsureEnvironmentFeedbackHealthHealthcareHigh PrevalenceHumanHuman bodyIncidenceIndividualInjuryInterventionLeadLifeLiftingLow Back PainMachine LearningMethodsModelingMonitorMovementMuscleMusculoskeletalOccupationsPainPatternPhysical activityPublic HealthResearchRisk FactorsRoboticsSafetySelf-Help DevicesSystemTechniquesTechnologyTimeTissuesTrainingVertebral columnVisionWorkWorkplacebasecostcyber physicaldata sharingdesignevidence baseexoskeletonexperimental studyhealth datahuman subjecthuman-in-the-looplearning strategylight weightmultidisciplinarymultimodalityoperationphysically handicappedportabilitypreventprototypesensorwearable sensor technology
项目摘要
The objective of this proposal is to address core scientific challenges related to sensing, actuation and control of
cyber-physically assistive clothing (CPAC). CPAC is a kind of Human-in-the-loop Cyber-Physical System (HCPS), in
which actuated clothing is coordinated in unison with human body movement to enhance safety and health. We
propose addressing key HCPS challenges within the context of using CPAC to reduce societal incidence of low back
pain, by preventing lumbar (spine) overloading and overuse injuries. Low back pain is targeted because it is one of the
leading causes of physical disability and missed work. High and/or repetitive forces on lumbar muscles and discs can
occur during daily tasks, and are known to be major risk factors that can lead to back pain and injury. The long-term
vision is to create smart clothing that can monitor lumbar loading, train safe movement patterns, and directly assist
wearers to reduce the musculoskeletal forces that cause pain and injury. This proposed transformation of clothing is
similar to how wristwatches have transformed from timepieces into health monitors; however, CPAC is even more
exciting because it combines the form-factor of clothing with the assistance benefits of an exoskeleton to reduce
biological tissue loading for a broad range of individuals, occupations and tasks. Thrust 1 will adapt machine learning
techniques in order to monitor lumbar loading and detect excessive spine forces via portable, wearable sensors, such
that timely feedback/intervention can be provided. This thrust will result in the creation of a publicly shared data set
that contains synchronized, multimodal (lab-based and wearable) sensor data collected from >500 actions per
subject, the largest such corpus for machine learning in this domain. Thrust 2 will model the dynamics of cyber,
physical and human components of CPAC in order to develop optimal control and learning strategies. Thrust 3 will
integrate sensors, fusion algorithms and portable actuation into a complete wearable prototype. A human subject
experiment will be performed to objectively evaluate the function of CPAC. At the focus of this proposal is the human
body; monitored, analyzed and assisted by multidisciplinary CPS technologies. The project integrates expertise in
biomechanics, machine learning, sensor fusion, soft robotics, wearable assistive technology, and clinical management
of low back pain to transform clothing from materials that cover the body into wearable systems that can track and
protect low back health. The key scientific HCPS challenges that need to be overcome, and which are addressed in
this proposed research, in order to realize the broad societal benefits of CPAC are: (1) real-time sensing and assistive
control of the HCPS and its co-adaptation to different subjects and diverse environments, (2) system design and
verification ensuring safe operation and that no harm is done to human subjects through unanticipated feedback, (3)
selection and placement of low cost sensors aiding affordable and realistic manufacturing of CPAC, (4) integration of
wearable sensors and actuators into a reliable and effective HCPS.
该提案的目的是解决与感应,驱动和控制有关的核心科学挑战
网络物理辅助服装(CPAC)。 CPAC是一种人类在循环网络物理系统(HCP)中,
驱动的衣服与人体运动一致协调,以增强安全性和健康状况。我们
提出在使用CPAC降低社会发病率的背景下解决关键HCP的挑战
疼痛,防止腰部(脊柱)超负荷和过度使用伤害。腰痛是针对性的,因为它是
主要原因是身体残疾和缺席的工作。腰部肌肉和椎间盘上的高和/或重复力可以
发生在日常任务期间,众所周知是可能导致背部疼痛和受伤的主要危险因素。长期
视觉是创造智能服装,可以监测腰部负荷,训练安全运动模式并直接协助
佩戴者减少引起疼痛和损伤的肌肉骨骼力。这项提议的衣服转变是
类似于手表从钟表转变为健康监测器的方式;但是,CPAC甚至更多
令人兴奋,因为它将服装的形式与外骨骼的帮助相结合,以减少
为广泛的个体,职业和任务的生物组织加载。推力1将适应机器学习
技术以监测腰部载荷并通过便携式可穿戴传感器检测过多的脊柱力,例如
可以提供及时的反馈/干预。这种推力将导致创建公开共享的数据集
其中包含从> 500个操作收集的同步,多模式(基于实验室和可穿戴的)传感器数据
主题是该领域中机器学习的最大语料库。推力2将模拟网络的动力学,
CPAC的物理和人类组成部分,以制定最佳的控制和学习策略。推力3将
将传感器,融合算法和便携式启动集成到完整的可穿戴原型中。人类主题
实验将进行客观评估CPAC的功能。该提议的重点是人类
身体;通过多学科CPS技术对监测,分析和协助。该项目将专业知识纳入
生物力学,机器学习,传感器融合,软机器人技术,可穿戴辅助技术和临床管理
下腰痛以使衣服从覆盖人体的材料转变为可穿戴系统的材料,这些系统可以追踪和
保护下背部健康。需要克服的关键科学HCP挑战,并在
为了意识到CPAC的广泛社会利益,这项拟议的研究是:(1)实时感知和辅助
控制HCP及其对不同主题和不同环境的共同适应,(2)系统设计和
验证确保安全操作,并且通过意外反馈对人类受试者无害,(3)
低成本传感器的选择和放置协助CPAC负担得起且现实的制造,(4)集成
可穿戴的传感器和执行器变成可靠且有效的HCP。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
- DOI:10.3390/s21020340
- 发表时间:2021-01-06
- 期刊:
- 影响因子:0
- 作者:Matijevich ES;Volgyesi P;Zelik KE
- 通讯作者:Zelik KE
Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort.
- DOI:10.3390/ijerph182413115
- 发表时间:2021-12-12
- 期刊:
- 影响因子:0
- 作者:Elstub LJ;Fine SJ;Zelik KE
- 通讯作者:Zelik KE
How Accurately Can Wearable Sensors Assess Low Back Disorder Risks during Material Handling? Exploring the Fundamental Capabilities and Limitations of Different Sensor Signals.
- DOI:10.3390/s23042064
- 发表时间:2023-02-12
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tibial bone forces can be monitored using shoe-worn wearable sensors during running.
- DOI:10.1080/02640414.2022.2107816
- 发表时间:2022-08
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
- DOI:10.1016/j.humov.2020.102690
- 发表时间:2020-12
- 期刊:
- 影响因子:2.1
- 作者:Matijevich, Emily S.;Scott, Leon R.;Volgyesi, Peter;Derry, Kendall H.;Zelik, Karl E.
- 通讯作者:Zelik, Karl E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl E Zelik其他文献
Karl E Zelik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl E Zelik', 18)}}的其他基金
CPS: Cyber-physically assistive clothing to reduce societal incident of low back pain
CPS:网络物理辅助服装可减少腰痛的社会事件
- 批准号:
9791175 - 财政年份:2018
- 资助金额:
$ 31.16万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
Improved Brain-Computer Interface Decoding for Activities of Daily Life
改进日常生活活动的脑机接口解码
- 批准号:
10744925 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别: