CPS: Cyber-physically assistive clothing to reduce societal incident of low back pain
CPS:网络物理辅助服装可减少腰痛的社会事件
基本信息
- 批准号:9979852
- 负责人:
- 金额:$ 31.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBackBack InjuriesBack PainBiologicalBiomechanicsClinicalClinical ManagementClothingCumulative Trauma DisordersDataData SetEnsureEnvironmentFeedbackHealthHealthcareHigh PrevalenceHumanHuman bodyIncidenceIndividualInjuryInterventionLeadLifeLiftingLow Back PainMachine LearningMethodsModelingMonitorMovementMuscleMusculoskeletalOccupationsPainPatternPhysical activityPublic HealthResearchRisk FactorsRoboticsSafetySelf-Help DevicesSystemTechniquesTechnologyTimeTissuesTrainingVertebral columnVisionWorkWorkplacebasecostcyber physicaldata sharingdesignevidence baseexoskeletonexperimental studyhealth datahuman subjecthuman-in-the-looplearning strategylight weightmultidisciplinarymultimodalityoperationphysically handicappedportabilitypreventprototypesensorwearable sensor technology
项目摘要
The objective of this proposal is to address core scientific challenges related to sensing, actuation and control of
cyber-physically assistive clothing (CPAC). CPAC is a kind of Human-in-the-loop Cyber-Physical System (HCPS), in
which actuated clothing is coordinated in unison with human body movement to enhance safety and health. We
propose addressing key HCPS challenges within the context of using CPAC to reduce societal incidence of low back
pain, by preventing lumbar (spine) overloading and overuse injuries. Low back pain is targeted because it is one of the
leading causes of physical disability and missed work. High and/or repetitive forces on lumbar muscles and discs can
occur during daily tasks, and are known to be major risk factors that can lead to back pain and injury. The long-term
vision is to create smart clothing that can monitor lumbar loading, train safe movement patterns, and directly assist
wearers to reduce the musculoskeletal forces that cause pain and injury. This proposed transformation of clothing is
similar to how wristwatches have transformed from timepieces into health monitors; however, CPAC is even more
exciting because it combines the form-factor of clothing with the assistance benefits of an exoskeleton to reduce
biological tissue loading for a broad range of individuals, occupations and tasks. Thrust 1 will adapt machine learning
techniques in order to monitor lumbar loading and detect excessive spine forces via portable, wearable sensors, such
that timely feedback/intervention can be provided. This thrust will result in the creation of a publicly shared data set
that contains synchronized, multimodal (lab-based and wearable) sensor data collected from >500 actions per
subject, the largest such corpus for machine learning in this domain. Thrust 2 will model the dynamics of cyber,
physical and human components of CPAC in order to develop optimal control and learning strategies. Thrust 3 will
integrate sensors, fusion algorithms and portable actuation into a complete wearable prototype. A human subject
experiment will be performed to objectively evaluate the function of CPAC. At the focus of this proposal is the human
body; monitored, analyzed and assisted by multidisciplinary CPS technologies. The project integrates expertise in
biomechanics, machine learning, sensor fusion, soft robotics, wearable assistive technology, and clinical management
of low back pain to transform clothing from materials that cover the body into wearable systems that can track and
protect low back health. The key scientific HCPS challenges that need to be overcome, and which are addressed in
this proposed research, in order to realize the broad societal benefits of CPAC are: (1) real-time sensing and assistive
control of the HCPS and its co-adaptation to different subjects and diverse environments, (2) system design and
verification ensuring safe operation and that no harm is done to human subjects through unanticipated feedback, (3)
selection and placement of low cost sensors aiding affordable and realistic manufacturing of CPAC, (4) integration of
wearable sensors and actuators into a reliable and effective HCPS.
该提案的目标是解决与传感、驱动和控制相关的核心科学挑战
网络物理辅助服装(CPAC)。 CPAC是一种人机交互信息物理系统(HCPS),
它驱动的衣服与人体运动协调一致,以提高安全和健康。我们
建议在使用 CPAC 降低腰背社会发病率的背景下解决 HCPS 的关键挑战
通过防止腰椎(脊柱)超负荷和过度使用损伤来缓解疼痛。腰痛是有针对性的,因为它是
造成身体残疾和缺勤的主要原因。对腰部肌肉和椎间盘的高强度和/或重复性作用力可能会导致
发生在日常工作中,并且被认为是可能导致背痛和受伤的主要危险因素。长期来看
愿景是创造智能服装,可以监测腰部负荷,训练安全运动模式,并直接协助
佩戴者可以减少导致疼痛和伤害的肌肉骨骼力量。此次提出的服装改造是
类似于腕表从计时器转变为健康监测器;然而,CPAC 更
令人兴奋的是,它结合了服装的外形因素和外骨骼的辅助优势,以减少
适用于各种个人、职业和任务的生物组织负载。 Thrust 1 将适应机器学习
通过便携式可穿戴传感器监测腰部负载并检测过度脊柱力的技术,例如
可以提供及时的反馈/干预。这一推动力将导致创建一个公开共享的数据集
包含从每个超过 500 个操作收集的同步、多模式(基于实验室和可穿戴)传感器数据
主题,该领域最大的机器学习语料库。 Thrust 2 将模拟网络的动态,
CPAC 的物理和人体成分,以制定最佳控制和学习策略。推力3将
将传感器、融合算法和便携式驱动集成到完整的可穿戴原型中。人类主体
将进行实验来客观评价CPAC的功能。该提案的重点是人类
身体;由多学科 CPS 技术进行监控、分析和协助。该项目整合了以下方面的专业知识
生物力学、机器学习、传感器融合、软机器人、可穿戴辅助技术和临床管理
将衣服从覆盖身体的材料转变为可以跟踪和记录的可穿戴系统
保护腰部健康。需要克服并解决的关键科学 HCPS 挑战
本研究旨在实现 CPAC 的广泛社会效益:(1)实时传感和辅助
HCPS的控制及其对不同主体和不同环境的适应性,(2)系统设计和
验证确保安全操作,并且不会因意外反馈而对人类受试者造成伤害,(3)
选择和放置低成本传感器,有助于经济实惠且现实的 CPAC 制造,(4) 集成
将可穿戴传感器和执行器集成到可靠且有效的 HCPS 中。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
- DOI:10.3390/s21020340
- 发表时间:2021-01-06
- 期刊:
- 影响因子:0
- 作者:Matijevich ES;Volgyesi P;Zelik KE
- 通讯作者:Zelik KE
Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort.
- DOI:10.3390/ijerph182413115
- 发表时间:2021-12-12
- 期刊:
- 影响因子:0
- 作者:Elstub LJ;Fine SJ;Zelik KE
- 通讯作者:Zelik KE
Tibial bone forces can be monitored using shoe-worn wearable sensors during running.
- DOI:10.1080/02640414.2022.2107816
- 发表时间:2022-08
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
How Accurately Can Wearable Sensors Assess Low Back Disorder Risks during Material Handling? Exploring the Fundamental Capabilities and Limitations of Different Sensor Signals.
- DOI:10.3390/s23042064
- 发表时间:2023-02-12
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of pressure insole sampling frequency on insole-measured peak force accuracy during running.
- DOI:10.1016/j.jbiomech.2022.111387
- 发表时间:2022-12-01
- 期刊:
- 影响因子:2.4
- 作者:Elstub, L J;Grohowski, L M;Zelik, K E
- 通讯作者:Zelik, K E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl E Zelik其他文献
Karl E Zelik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl E Zelik', 18)}}的其他基金
CPS: Cyber-physically assistive clothing to reduce societal incident of low back pain
CPS:网络物理辅助服装可减少腰痛的社会事件
- 批准号:
9791175 - 财政年份:2018
- 资助金额:
$ 31.16万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
Improved Brain-Computer Interface Decoding for Activities of Daily Life
改进日常生活活动的脑机接口解码
- 批准号:
10744925 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别: