Determinants of pancreatic cancer and malignant melanoma phenotypes in CDKN2A hereditary kindreds
CDKN2A 遗传家族中胰腺癌和恶性黑色素瘤表型的决定因素
基本信息
- 批准号:9978727
- 负责人:
- 金额:$ 59.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-17 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAge of OnsetAlgorithmsAllelesAlzheimer&aposs disease brainBackBiologicalBiologyBrain NeoplasmsCDKN2A geneCancer Gene MutationCancer-Predisposing GeneCell Cycle ProgressionCellsCodeCommunitiesComputer ModelsCyclin-Dependent Kinase Inhibitor 2ADNADataData SetDevelopmentDiagnosisDiscriminationDiseaseEnvironmental ExposureEtiologyGene ExpressionGene FrequencyGene MutationGene-ModifiedGenerationsGenesGeneticGenomeGenotypeGerm-Line MutationIn VitroIndividualInheritedKnowledgeLightMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMethodologyMethodsMinorModelingMolecularMutationOncogenicPathway interactionsPatternPenetrancePerformancePhenotypeProcessProteinsProteomicsRiskSignal TransductionSmokingSun ExposureSyndromeTestingTrainingTransforming Growth Factor betaVariantWNT Signaling PathwayWeightbasebead chipcancer genomecell growthconvolutional neural networkdeep learningdeep learning algorithmdisease phenotypeepidemiologic dataepigenomicsgenetic analysisgenetic variantgenome-widegenome-wide analysishigh dimensionalityin vivoin vivo Modelinnovationinsightinterestkindredleukemiamelanomamembermetaplastic cell transformationmutantmutation carriernetwork modelsnon-geneticnovelnovel diagnosticsnovel therapeutic interventionoverexpressionprotein expressionreceptortooltranscriptome sequencingtransmission processtumorigenesis
项目摘要
This proposal addresses Provocative Question #2. We will use innovative approaches to investigate how
CDKN2A (which encodes p16) mutation carriers develop different cancer phenotypes (pancreatic cancer vs
melanoma vs no cancer), and include both genetic and non-genetic factors. We have identified 4 large, multi-
generational kindreds with a founder CDKN2A deleterious mutation (L16R, 47T>G). Our preliminary
observations demonstrate that this mutant has lower expression and decreased ability to regulate cell cycle
progression compared to wild type protein. Our sequencing studies of kindred members with different cancer
phenotypes have identified potential variants in novel genes that modify risk (LGR6, a co-receptor of Wnt
signaling and COL11A1, which participates in oncogenic signaling, including TGFbeta). We will determine the
ability of the p16 mutant to promote transformation and how it is influenced by interaction with the above
candidate modifier genes, LGR6 or COL11A1, in pancreatic cancer and melanoma. We will also develop novel
computational models using machine deep learning, to generate networks that capture high dimensional
features to integrate gene, biology, and cancer phenotype. This approach will be extended to kindreds with
other CDKN2A mutations. Our Specific Aims are to: (1) Identify genotypes of potential modifier genes in
multiple kindreds that feature pancreatic cancer and melanoma and known to carry CDKN2A germline
mutations. We will use genome wide variant coverage of germline DNA from CDKN2A carriers from the 4 large
L16R kindreds, plus additional members in 42 other similar CDKN2A kindreds. We will identify candidate
modifier genes in the kindreds by rule-based statistical genetic analysis of genotypes. (2) Define the impact of
CDKN2A L16R mutation on the function of p16 and its interplay with candidate modifier genes. We will
elucidate the biological significance of mutations in CDKN2A and candidate modifier genes using functional and
high throughput methodologies by analyzing the mechanism underlying the interplay between p16 and modifier
genes; define new pathways cooperating with this interplay using a combination of genome wide studies to
assess transformation in cells carrying p16 mutant or wild-type background using well established in vitro and in
vivo models. (3) Develop a deep learning network model to integrate genetic, biological and
epidemiological data to accurately infer pancreatic cancer and melanoma phenotypes and age of onset
in mutation carriers. We will apply a convolutional neural network, a deep learning algorithm in the training
dataset, develop a back-propagation algorithm to fine tune “weights,” and construct mutation-gene networks to
capture high-dimensional features for each disease subclass. We will acquire and disseminate new knowledge
and tools to the scientific community. Our integrated methods and approach will bring insight into how different
cancer phenotypes can occur with identical predisposing mutations, which can be applied to other cancer
syndromes with similar challenges.
该提案解决了争议性问题#2,我们将使用创新方法来研究如何解决这一问题。
CDKN2A(编码 p16)突变携带者会发展出不同的癌症表型(胰腺癌与
黑色素瘤与非癌症),并包括遗传和非遗传因素,我们已经确定了 4 个大的、多因素。
具有创始人 CDKN2A 有害突变(L16R,47T>G)的世代亲属。
观察结果表明,该突变体的表达较低,调节细胞周期的能力下降
与野生型蛋白质相比,我们对患有不同癌症的亲属成员进行了进展研究。
表型已识别出改变风险的新基因中的潜在变异(LGR6,Wnt 的共同受体)
信号传导和 COL11A1(参与致癌信号传导,包括 TGFbeta)。
p16突变体促进转化的能力以及它如何受到与上述相互作用的影响
我们还将开发新的胰腺癌和黑色素瘤候选修饰基因 LGR6 或 COL11A1。
使用机器深度学习的计算模型,生成捕获高维的网络
这种方法将扩展到具有整合基因、生物学和癌症表型的特征。
其他 CDKN2A 突变我们的具体目标是: (1) 鉴定潜在修饰基因的基因型。
具有胰腺癌和黑色素瘤特征且已知携带 CDKN2A 种系的多个亲属
我们将使用来自 4 个大型 CDKN2A 携带者的种系 DNA 的全基因组变异覆盖。
L16R 亲属,加上 42 个其他类似 CDKN2A 亲属中的其他成员,我们将确定候选者。
通过基于规则的基因型统计遗传分析来确定亲属中的修饰基因(2)定义影响。
CDKN2A L16R 突变对 p16 的功能及其与候选修饰基因的相互作用。
使用功能和功能阐明 CDKN2A 和候选修饰基因突变的生物学意义
通过分析 p16 和修饰剂之间相互作用的机制实现高通量方法
基因;结合全基因组研究来定义与这种相互作用相配合的新途径
使用体外和体内成熟的方法评估携带 p16 突变体或野生型背景的细胞中的转化
(3) 开发整合遗传、生物和生物的深度学习网络模型。
流行病学数据可准确推断胰腺癌和黑色素瘤表型以及发病年龄
在突变载体中,我们将在训练中应用卷积神经网络,一种深度学习算法。
数据集,开发反向传播算法来微调“权重”,并构建突变基因网络以
捕获每个疾病子类的高维特征我们将获取并传播新知识。
我们的综合方法和方法将让我们深入了解科学界的不同之处。
癌症表型可能会出现相同的诱发突变,这也适用于其他癌症
具有类似挑战的综合症。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells.
- DOI:10.1016/j.stemcr.2022.12.007
- 发表时间:2023-02-14
- 期刊:
- 影响因子:5.9
- 作者:Yi, Yao;Zeng, Yingying;Sam, Tsz Wing;Hamashima, Kiyofumi;Tan, Rachel Jun Rou;Warrier, Tushar;Phua, Jun Xiang;Taneja, Reshma;Liou, Yih-Cherng;Li, Hu;Xu, Jian;Loh, Yuin-Han
- 通讯作者:Loh, Yuin-Han
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Ernesto Fernandez-Zapico其他文献
Martin Ernesto Fernandez-Zapico的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Ernesto Fernandez-Zapico', 18)}}的其他基金
Determinants of pancreatic cancer and malignant melanoma phenotypes in CDKN2A hereditary kindreds
CDKN2A 遗传家族中胰腺癌和恶性黑色素瘤表型的决定因素
- 批准号:
9172003 - 财政年份:2016
- 资助金额:
$ 59.06万 - 项目类别:
Determinants of pancreatic cancer and malignant melanoma phenotypes in CDKN2A hereditary kindreds
CDKN2A 遗传家族中胰腺癌和恶性黑色素瘤表型的决定因素
- 批准号:
9334146 - 财政年份:2016
- 资助金额:
$ 59.06万 - 项目类别:
Repurposing Disulfiram: A Novel Strategy to Help Cancer Patients Regain Muscle
重新利用双硫仑:帮助癌症患者恢复肌肉的新策略
- 批准号:
9131684 - 财政年份:2015
- 资助金额:
$ 59.06万 - 项目类别:
Repurposing Disulfiram: A Novel Strategy to Help Cancer Patients Regain Muscle
重新利用双硫仑:帮助癌症患者恢复肌肉的新策略
- 批准号:
9333283 - 财政年份:2015
- 资助金额:
$ 59.06万 - 项目类别:
Repurposing Disulfiram: A Novel Strategy to Help Cancer Patients Regain Muscle
重新利用双硫仑:帮助癌症患者恢复肌肉的新策略
- 批准号:
8972809 - 财政年份:2015
- 资助金额:
$ 59.06万 - 项目类别:
Repurposing Disulfiram: A Novel Strategy to Help Cancer Patients Regain Muscle
重新利用双硫仑:帮助癌症患者恢复肌肉的新策略
- 批准号:
10017018 - 财政年份:2015
- 资助金额:
$ 59.06万 - 项目类别:
Hedgehog EGF Pathway Interaction: Novel Multi-Target Therapy Pancreatic Cancer
Hedgehog EGF 通路相互作用:新型多靶点治疗胰腺癌
- 批准号:
8719562 - 财政年份:2013
- 资助金额:
$ 59.06万 - 项目类别:
Regulation of the Tumor Microenvironment in Hepatocellular Carcinoma
肝细胞癌肿瘤微环境的调节
- 批准号:
8795284 - 财政年份:2012
- 资助金额:
$ 59.06万 - 项目类别:
Regulation of the Tumor Microenvironment in Hepatocellular Carcinoma
肝细胞癌肿瘤微环境的调节
- 批准号:
8724701 - 财政年份:2012
- 资助金额:
$ 59.06万 - 项目类别:
Regulation of the Tumor Microenvironment in Hepatocellular Carcinoma
肝细胞癌肿瘤微环境的调节
- 批准号:
8620618 - 财政年份:2012
- 资助金额:
$ 59.06万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 59.06万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 59.06万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 59.06万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 59.06万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 59.06万 - 项目类别: