Model Driven Construction of Dual-switch Selection Gene Drives to Combat Drug Resistance
对抗耐药性的双开关选择基因驱动的模型驱动构建
基本信息
- 批准号:9973217
- 负责人:
- 金额:$ 27.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmazeAntibioticsAntiviral AgentsBacteriaBiologicalBiologyBioreactorsBystander EffectCRISPR/Cas technologyCell TherapyCellsChemicalsChemistryClinicClinicalComplexComputer ModelsDevelopmentDiffuseDimerizationDisease ProgressionDrug Delivery SystemsDrug resistanceEngineeringEpidermal Growth Factor ReceptorEukaryotaEvolutionFailureGenesGoalsHealthHeterogeneityHumanIn VitroIndustrializationIndustryJointsLeadLeftLentivirus VectorLettersLifeMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresModelingModernizationMutationNatural SelectionsNitroreductasesOncogenesOutcomePharmaceutical PreparationsPhosphotransferasesPopulationPopulation SizesProcessProdrugsProkaryotic CellsPublic HealthRaceResistanceResolutionRiskRisk EstimateRunningSWI1SocietiesSwitch GenesSystemTacrolimus Binding Protein 1ATechniquesTechnologyTestingTherapeutic InterventionToxinTreesVirusanti-cancerarmasexualbiological systemscell killingcellular engineeringcombatdesigndimerdrug developmentdrug discoverydual switch selection gene driveengineering designexperiencefightingnovelnovel therapeuticsprototypesimulationsuicide genetargeted cancer therapytargeted treatmenttherapy resistanttreadmill
项目摘要
Project Summary/Abstract
Evolution underlies both the development of humankind as well as the greatest challenges to human health.
Across the tree of life, cancer and infectious viruses, prokaryotes, and eukaryotes exist within complex
competitive landscapes that can promote or inhibit disease progression and therapeutic resistance. The
amazing diversity of heterogenous cell populations raises existential questions about how to combat drug
resistance evolution. The convential approach to this problem is to attempt to reverse engineer evolving
biological systems. I.e., after a selection has occurred, we isolate resistant cells, attempt to determine what
caused drug resistance and treat the resistant state. This strategy results in a “resistance treadmill” whereby
resistance evolution occurs, new drugs combat drug resistance and then resistance re-emerges – a process
that occurs until we run out of effective agents. We believe that instead of combatting evolution, we should
make use of it. We propose to employ a “forward engineering” approach that seeks to create new paradigms to
control and understand evolution. By creating a dual switch gene drive, we posit that we can use engineering
design to build populations whose evolution can be guided by model driven therapeutic interventions. In
essence, we will drive evolution in heterogenous cell populations towards eradicatable outcomes. This would
be paradigm shifting in the clinic, but, by building these cellular systems, manipulating them with chemistry and
biology, and quantiatively modeling their dynamics, we can also “build to understand” evolution as we take
giant strides towards controlling it.
项目概要/摘要
进化既是人类发展的基础,也是人类健康面临的最大挑战。
在生命之树上,癌症和传染性病毒、原核生物和真核生物存在于复杂的环境中。
可以促进或抑制疾病进展和治疗耐药性的竞争格局。
异质细胞群的惊人多样性提出了如何对抗毒品的生存问题
解决这个问题的传统方法是尝试对进化进行逆向工程。
即,在选择发生后,我们分离出抗性细胞,尝试确定什么。
因此,这种策略导致了“耐药跑步机”。
耐药性进化发生,新药对抗耐药性,然后耐药性重新出现——一个过程
这种情况会一直发生,直到我们用完有效的药物为止。我们认为,我们不应该对抗进化,而应该这样做。
我们建议采用“正向工程”方法来创建新的范式。
通过创建双开关基因驱动器,我们认为我们可以利用工程学来控制和理解进化。
设计建立可以通过模型驱动的治疗干预来指导其进化的群体。
本质上,我们将推动异质细胞群的进化,以实现可根除的结果。
是临床范式转变,但是,通过构建这些细胞系统,用化学和操作它们
生物学,并对其动态进行定量建模,我们还可以“构建理解”进化
朝着控制它迈出了巨大的一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Pritchard其他文献
Justin Pritchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Pritchard', 18)}}的其他基金
Personalization and Failure Testing of Dual Switch Gene Drives in Lung Cancer
肺癌双开关基因驱动的个性化和故障测试
- 批准号:
10818035 - 财政年份:2021
- 资助金额:
$ 27.43万 - 项目类别:
Personalization and Failure Testing of Dual Switch Gene Drives in Lung Cancer
肺癌双开关基因驱动的个性化和故障测试
- 批准号:
10330219 - 财政年份:2021
- 资助金额:
$ 27.43万 - 项目类别:
Personalization and Failure Testing of Dual Switch Gene Drives in Lung Cancer
肺癌双开关基因驱动的个性化和故障测试
- 批准号:
10818053 - 财政年份:2021
- 资助金额:
$ 27.43万 - 项目类别:
Personalization and Failure Testing of Dual Switch Gene Drives in Lung Cancer
肺癌双开关基因驱动的个性化和故障测试
- 批准号:
10487531 - 财政年份:2021
- 资助金额:
$ 27.43万 - 项目类别:
相似国自然基金
基于生物激励特征和惊奇计算模型的智能驾驶场景异常事件检测研究
- 批准号:61603357
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
大数据流中低层与高层惊奇事件检测的研究
- 批准号:61572362
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10647843 - 财政年份:2020
- 资助金额:
$ 27.43万 - 项目类别:
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10428624 - 财政年份:2020
- 资助金额:
$ 27.43万 - 项目类别:
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10035218 - 财政年份:2020
- 资助金额:
$ 27.43万 - 项目类别:
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10208910 - 财政年份:2020
- 资助金额:
$ 27.43万 - 项目类别: