"FLEXIBLE LIGHT FIELD 3D ENDOSCOPY
“灵活光场 3D 内窥镜
基本信息
- 批准号:9974190
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptedAlgorithmsArchitectureAssessment toolBenchmarkingBiologicalBiopsyCalibrationCategoriesColonColorDataDevelopmentDiagnosisDiagnosticDiseaseDuodenumEndoscopesEndoscopyEsophagusExploratory/Developmental GrantFamily suidaeFiberFutureGastrointestinal tract structureGeneral AnesthesiaGenerationsGoalsGoldImageImaging PhantomsInjuryInterventionLeadLesionLightLocationMalignant NeoplasmsMeasuresMethodsOperative Surgical ProceduresOpticsOrganPathologicPatientsPerformancePhenotypePhotographyPhysiciansResearchResearch Project GrantsResectedResolutionRiskSamplingScanningSiteStomachStructureSurgical incisionsSystemTechnologyTemperatureTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTissue imagingTissuesVisualizationWorkbasedata acquisitionex vivo imagingflexibilityhigh resolution imagingimage registrationimagerimaging capabilitiesimaging probein vivoinstrumentlensreal time monitoringspectrographthree dimensional structurethree-dimensional visualization
项目摘要
Project Summary: The overall goal of this research is to develop a three-dimensional (3D) and multispectral
fiber-bundle endoscope for the real-time, non-invasive assessment of biological tissue. Optical endoscopy has
been extensively employed worldwide by physicians to diagnose or treat diseases, such as cancer. These
probes are inserted into the body through small incisions or natural body openings, providing high-resolution
images of internal organs and tissue. Depending on whether the image is transmitted through lenses alone or
fibers, optical endoscopes are generally classified into two categories, rigid and flexible. Compared with the rigid
counterparts, flexible endoscopes feature a lower rate of complications, increased patient comfort, and a lack of
requirement for general anesthesia. Moreover, they allow the visualization of the entire gastrointestinal tract,
such as esophagus, stomach, and duodenum, which are generally inaccessible by rigid endoscopes.
Despite widespread use, conventional flexible optical endoscopes have been crucially limited to 2D views
of pathological sites. Because most tissue lesions manifest themselves as abnormal 3D structural changes, the
lack of depth information frequently jeopardizes the diagnostic usefulness. On the other hand, the value of
spectral imaging for phenotype description and as a quantitative assessment tool for tissue abnormalities has
continued to grow exponentially. Nonetheless, to acquire the color information, most conventional spectral
imagers rely on scanning, either in the spatial or spectral domain. Limited by the scanning mechanism, these
imagers are generally slow in data acquisition and therefore unsuitable for imaging dynamics.
To overcome above limitations, we propose flexible light field endoscopy (Flex-LFE) which will enable 3D
and multispectral imaging of tissue lesions in real time. The Flex-LFE will be built upon a computational imaging
architecture that has been previously demonstrated in photography. However, rather than imaging macroscopic
objects, we will tailor Flex-LFE for flexible endoscopic imaging in two specific aims: i) develop a Flex-LFE for 3D
and multispectral imaging of biological tissue, ii) evaluate the probe’s imaging performance both in phantoms
and ex vivo.
The proposed Flex-LFE will have broad impacts on the endoscopic diagnosis and treatment. The
acquisition of 3D and spectral information will facilitate the identification of a variety of tissue lesions, alleviating
the need for invasive tissue biopsy. Moreover, the probe’s fast 3D imaging capability will enable real-time
monitoring of laparoscopic interventions, providing accurate 3D visualization of surgical sites and thereby
reducing the risk of misidentifying structures, a situation that can cause severe patient injuries. As the first
instrument of its kind, the development of Flex-LFE will ultimately lead to a new generation of optical 3D
endoscopes and make transformative advancements to the state-of-the-art approaches.
项目摘要:这项研究的总体目标是开发三维(3D)和多光谱
实时无创评估生物组织的纤维束内窥镜。光学内窥镜具有
他们在全球范围内广泛使用医生来诊断或治疗癌症,例如癌症。
通过小切口或自然的身体开口将问题插入体内,提供高分辨率
内脏和组织的图像。取决于图像是单独通过镜头传输还是
纤维,光学内窥镜通常分为两类,刚性和柔韧性。与刚性相比
同行,灵活的内窥镜的并发症发生率较低,患者舒适性增加,并且缺乏
对全身麻醉的要求。此外,它们允许可视化整个胃肠道,
例如食道,胃和十二指肠,它们通常无法通过刚性内窥镜访问。
尽管使用了宽度,但常规柔性光学内窥镜已完全限于2D视图
病理部位。由于大多数组织病变都表现为异常的3D结构变化,所以
缺乏深度信息通常会危害诊断有用性。另一方面,价值
表型描述的光谱成像和作为组织异常的定量评估工具具有
继续成倍增长。但是,为了获取颜色信息,大多数传统的光谱
Imagesr依赖于空间或光谱域中的扫描。受扫描机制的限制,这些
图像R的数据采集通常很慢,因此不适合成像动力学。
为了克服以上局限性,我们提出了柔性光场内窥镜检查(Flex-LFE),该内窥镜将启用3D
和组织病变的多光谱成像实时。 Flex-LFE将建立在计算成像上
以前在摄影中证明的建筑。但是,而不是成像宏观
物体,我们将在两个具体目的中量身定制flex-lfe,以进行灵活的内窥镜成像:i)为3D开发flex-lfe
生物组织的多光谱成像,ii)评估探针在幻象中的成像性能
和ex vivo。
拟议的Flex-LFE将对内窥镜诊断和治疗产生广泛的影响。
获取3D和光谱信息将有助于识别多种组织病变,减轻
需要侵入性组织活检。此外,调查的快速3D成像功能将实时实时
监测腹腔镜干预措施,提供手术部位的准确3D可视化,从而提供
减少误认结构的风险,这种情况可能导致严重的患者受伤。作为第一个
同类工具,Flex-LFE的开发最终将导致新一代的光学3D
内窥镜并将最先进方法的变革性进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Gao其他文献
Liang Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Gao', 18)}}的其他基金
Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
- 批准号:
10510352 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别:
Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
- 批准号:
10640170 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别:
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Measuring input-output operations of cortical neurons with large-scale neurotransmitter imaging
通过大规模神经递质成像测量皮质神经元的输入输出操作
- 批准号:
10687664 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别: