Center for Genomically Engineered Organs
基因组工程器官中心
基本信息
- 批准号:9928553
- 负责人:
- 金额:$ 3.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-21 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAnimalsArchitectureAreaBiologicalBiological ModelsBiologyBiomedical ResearchBlood VesselsBostonCell Differentiation processCellsCellular StructuresChurchClinical TrialsCollaborationsComplementComplexComputational algorithmComputer-Aided DesignDNADataDevelopmentDiseaseEmbryoEmbryonic DevelopmentEngineeringEpigenetic ProcessGenerationsGenetic TranscriptionGenome engineeringGenomicsGerm LinesGoalsHealthHematopoiesisHumanIn SituIn VitroIndividualInstitutesKnowledgeLaboratoriesLocationMethodsMicroscopyModelingMolecularMolecular ProfilingMusNeurobiologyNormal tissue morphologyOrganOrganoidsPathologicPathway interactionsPatternPediatric HospitalsPhysiologicalPrincipal InvestigatorProcessProductionPropertyProteinsProteomicsRNAReadingReagentResearchResearch PersonnelResolutionSpecific qualifier valueStem cellsStructureSystemTechnologyTestingTimeTissue EngineeringTissue ModelTissuesTranslatingWorkWritingcell typecostdesigneffective therapyembryo tissueepigenomicsexperimental studygenome editingimprovedinnovationmedical schoolsnovelprofessorprogramsprotein expressionprotein profilingsingle cell proteinsstemstem cell differentiationstem cell technologytechnology developmenttheories
项目摘要
The Center for Genomically Engineered Organs (CGEO) will combine cutting edge genomics, genome editing
technology, and tissue engineering methods to develop improved models of complex tissues. These tissues
will be producible in laboratories from reprogrammed or genetically modified stem or other cells, will contain
multiple cell types and vasculatures, and will be designed and rigorously compared against natural (healthy or
diseased) tissues so that they match closely at both a molecular level and in overall tissue architecture. These
model tissues have potential to greatly expedite biomedical progress by providing researchers a way to
conduct preliminary tests of theories about normal and disease biology quickly and inexpensively in their
laboratories before they have to move on to costly and potentially invasive experiments on animals or humans.
CGEOs research is divided into three Aims. In Aim 1, CGEO will develop methods to comprehensively
analyze tissues in situ at a molecular level, by acquiring high-throughput RNA expression, protein expression,
and epigenomic data together in each of the tissue's individual cells, along with the locations of these
molecules in these cells. In Aim 2, CGEO will develop and apply innovative computational algorithms that
compare the cells in the model tissues against their corresponding natural counterparts and assess
systematically not only how closely their corresponding cell type molecular profiles match, but also compare
their overall cell architectures and relationships. These algorithms will also specify how genome editing and
engineering can be used to improve the matching between the engineered cells in the model tissue and the
natural cells of the native tissue. CGEO will apply these technologies to build model tissues important to
neurobiology and hematopoiesis, and, finally, in Aim 3, also apply them to in vitro cultured embryos and germ
line tissues in mice, which has potential to reveal pathways that will enable models of all tissues to be
generated in a laboratory. CGEO is a collaboration of six laboratories in the Boston area with combined
expertise in advanced genomic and proteomic technology, genome engineering, developmental systems, stem
cell technology, epigenetics, super-resolution microscopy, and tissue engineering. The CGEO team comprises
Professors George Church (Principal Investigator), David Sinclair, and Chao-Ting Wu (all from Harvard
Medical School), Ed Boyden (MIT), George Daley (Children's Hospital), and Jennifer Lewis (Wyss Institute at
Harvard).
基因组工程器官中心(CGEO)将结合尖端基因组学、基因组编辑
技术和组织工程方法来开发复杂组织的改进模型。这些组织
将可在实验室中用重新编程或基因改造的干细胞或其他细胞生产,将包含
多种细胞类型和脉管系统,并将被设计并与自然(健康或
患病)组织,以便它们在分子水平和整体组织结构上紧密匹配。这些
模型组织有潜力极大地加速生物医学的进步,为研究人员提供了一种方法
快速且廉价地对正常和疾病生物学理论进行初步测试
实验室必须继续对动物或人类进行昂贵且可能具有侵入性的实验。
CGEO的研究分为三个目标。在目标 1 中,CGEO 将开发方法来全面
通过获取高通量 RNA 表达、蛋白质表达、
和表观基因组数据在每个组织的单个细胞中,以及这些细胞的位置
这些细胞中的分子。在目标 2 中,CGEO 将开发并应用创新的计算算法,
将模型组织中的细胞与其相应的天然对应物进行比较并评估
不仅系统地比较它们相应的细胞类型分子谱的匹配程度,而且还比较
他们的整体细胞架构和关系。这些算法还将指定基因组编辑和
工程可用于改善模型组织中的工程细胞与实际细胞之间的匹配性
天然组织的天然细胞。 CGEO 将应用这些技术来构建重要的组织模型
神经生物学和造血学,最后,在目标 3 中,还将它们应用于体外培养的胚胎和胚芽
小鼠体内的细胞系组织,有可能揭示使所有组织模型成为可能的途径
在实验室中生成。 CGEO 是波士顿地区六个实验室的合作项目
先进基因组和蛋白质组技术、基因组工程、发育系统、干细胞
细胞技术、表观遗传学、超分辨率显微镜和组织工程。 CGEO团队包括
George Church 教授(首席研究员)、David Sinclair 和 Chao-Ting Wu(均来自哈佛大学)
医学院)、Ed Boyden(麻省理工学院)、George Daley(儿童医院)和 Jennifer Lewis(威斯研究所)
哈佛)。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(18)
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning.
- DOI:10.1038/s41467-021-23576-0
- 发表时间:2021-05-28
- 期刊:
- 影响因子:16.6
- 作者:Xiang X;Corsi GI;Anthon C;Qu K;Pan X;Liang X;Han P;Dong Z;Liu L;Zhong J;Ma T;Wang J;Zhang X;Jiang H;Xu F;Liu X;Xu X;Wang J;Yang H;Bolund L;Church GM;Lin L;Gorodkin J;Luo Y
- 通讯作者:Luo Y
Beyond editing to writing large genomes.
- DOI:10.1038/nrg.2017.59
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Chari R;Church GM
- 通讯作者:Church GM
helixCAM: A platform for programmable cellular assembly in bacteria and human cells.
- DOI:10.1016/j.cell.2022.08.012
- 发表时间:2022-09-15
- 期刊:
- 影响因子:64.5
- 作者:Chao, George;Wannier, Timothy M.;Gutierrez, Clair;Borders, Nathaniel C.;Appleton, Evan;Chadha, Anjali;Lebar, Tina;Church, George M.
- 通讯作者:Church, George M.
Massively targeted evaluation of therapeutic CRISPR off-targets in cells.
- DOI:10.1038/s41467-022-31543-6
- 发表时间:2022-07-13
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels
- DOI:10.1126/sciadv.aaw2459
- 发表时间:2019-09-01
- 期刊:
- 影响因子:13.6
- 作者:Skylar-Scott, Mark A.;Uzel, Sebastien G. M.;Lewis, Jennifer A.
- 通讯作者:Lewis, Jennifer A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE M CHURCH其他文献
GEORGE M CHURCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE M CHURCH', 18)}}的其他基金
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10170406 - 财政年份:2020
- 资助金额:
$ 3.56万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10381535 - 财政年份:2020
- 资助金额:
$ 3.56万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10021992 - 财政年份:2019
- 资助金额:
$ 3.56万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9357685 - 财政年份:2016
- 资助金额:
$ 3.56万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9981018 - 财政年份:2016
- 资助金额:
$ 3.56万 - 项目类别:
Genome Engineering an IPSC Model of Alzheimer's Disease
阿尔茨海默病的基因组工程 IPSC 模型
- 批准号:
8756257 - 财政年份:2014
- 资助金额:
$ 3.56万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8572847 - 财政年份:2013
- 资助金额:
$ 3.56万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8728991 - 财政年份:2013
- 资助金额:
$ 3.56万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8919436 - 财政年份:2013
- 资助金额:
$ 3.56万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 3.56万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 3.56万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 3.56万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 3.56万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 3.56万 - 项目类别: