Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
基本信息
- 批准号:9930177
- 负责人:
- 金额:$ 21.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlginatesAnti-inflammatoryBiocompatible MaterialsBiomedical EngineeringBiomimeticsBone RegenerationBone TransplantationCalvariaCell AdhesionCell SurvivalCell TherapyCell TransplantationCell TransplantsCell physiologyCellsCuesCultured CellsDefectDevelopmentEffectivenessEngineeringFractureGelHistologicHumanHydrogelsImpaired wound healingImpairmentImplantIn SituIn VitroInstructionKnowledgeLigandsMeasuresMechanicsMesenchymalMesenchymal DifferentiationMineralsOligopeptidesOsteoblastsOsteogenesisPeptide Signal SequencesPeptidesPharmacologyProductionRGD (sequence)Recombinant ProteinsResearchRodentRoleSiteSourceSpeedStem cellsStimulusStromal CellsSystemTestingTherapeuticTissue EngineeringTissue TherapyTissuesTranslatingTransplantationTransplanted tissueVascular Endothelial Growth FactorsVascularizationangiogenesisbasebiophysical propertiesbonebone healingbone qualitycostcrosslinkdensityhealingimaging modalityimplantationimprovedin vivoinnovationlysylglycinemechanical propertiesnon-invasive imagingnovel strategiesolder patientosteogenicregenerativerepairedresponsestemsuccesstissue repairtranslational approach
项目摘要
PROJECT SUMMARY
Of the greater than 6 million fractures occurring yearly in the US, 5-20% will result in nonunion or delayed
union. Cell based therapies represent an exciting alternative to traditional bone grafting or implants, but cell
transplantation requires a tailorable substrate to provide necessary cues to implanted cells. Mesenchymal
stem/stromal cells (MSCs) are an attractive cell source for use in tissue engineering because of their robust
secretion of proangiogenic and anti-inflammatory trophic factors. Upon appropriate stimulation, MSCs can
directly contribute to bone formation by differentiating to bone-forming osteoblasts, yet osteogenically induced
MSCs suffer from reduced secretion of proangiogenic factors. We demonstrated that the presentation of a
proangiogenic peptide, Gly-His-Lys (GHK), to MSCs entrapped in alginate hydrogels resulted in up to a 4-fold
increase in their proangiogenic potential. We previously incorporated peptide ligands such as Arg-Gly-Asp
(RGD) to facilitate cell adhesion to ionically-crosslinked alginate and photocrosslinkable alginate gels (PAHs)
with more controlled degradation profiles. RGD stimulates osteogenic differentiation of MSCs but may impair
secretion of endogenous proangiogenic cues. Thus, there is a pressing need for biomaterials that can
simultaneously enhance the proangiogenic and osteogenic potential of transplanted MSCs to maximize their
efficacy in cell based therapies. Our central hypothesis is MSCs can be simultaneously stimulated to undergo
osteogenic differentiation while secreting potent proangiogenic cues, translating to enhanced therapeutic
potential by increasing local vascularization and bone formation. Aim 1. Determine the role of dual peptide
signaling on MSC osteogenic differentiation and proangiogenic potential when entrapped in PAHs. We
will synthesize PAHs with varying densities of RGD and GHK. Changes in the biophysical properties of the gel,
as well as the osteogenic and proangiogenic response of entrapped human MSCs will be determined. Aim 2.
Define the necessary biophysical properties of peptide-presenting PAHs to instruct MSC osteogenic
and proangiogenic potential. We will examine the role of each peptide on osteogenic differentiation and
proangiogenic potential, while measuring the contributions of cell adhesion and substrate bulk stiffness to MSC
response. Aim 3. Demonstrate the therapeutic potential of MSCs deployed in dual peptide-modified
alginate to promote vascularization and bone repair in rodent critical-sized calvarial bone defects. We
will characterize the capacity of MSCs implanted in peptide-presenting PAHs to promote bone repair in an
orthotopic defect. The role of implanted cells, quantity, and quality of bone formation will be assessed using
noninvasive imaging modalities and histological analysis. The proposed research is innovative because it
exploits the activity of two distinct peptides with a biodegradable hydrogel to potentiate the reparative potential
of MSCs. This research will provide a novel approach for regulating bone formation, and the strategies have
potential in enhancing the efficacy of materials-based therapies for tissue repair.
项目概要
美国每年发生超过 600 万例骨折,其中 5-20% 会导致骨不连或延迟骨折
联盟。基于细胞的疗法代表了传统骨移植或植入的令人兴奋的替代方案,但细胞
移植需要可定制的基质来为植入的细胞提供必要的线索。间充质
干/基质细胞 (MSC) 因其强大的功能而成为组织工程中极具吸引力的细胞来源。
促血管生成和抗炎营养因子的分泌。经过适当的刺激,间充质干细胞可以
通过分化成骨形成成骨细胞直接促进骨形成,但由成骨诱导
MSC 的促血管生成因子分泌减少。我们证明了
促血管生成肽 Gly-His-Lys (GHK) 对包埋在藻酸盐水凝胶中的 MSC 产生高达 4 倍的效果
增加其促血管生成潜力。我们之前整合了肽配体,例如 Arg-Gly-Asp
(RGD) 促进细胞粘附到离子交联藻酸盐和光交联藻酸盐凝胶 (PAH)
具有更可控的降解曲线。 RGD 刺激 MSC 的成骨分化,但可能会损害
内源性促血管生成信号的分泌。因此,迫切需要能够
同时增强移植的 MSC 的促血管生成和成骨潜力,以最大限度地发挥其作用
基于细胞的疗法的功效。我们的中心假设是 MSC 可以同时受到刺激
成骨分化,同时分泌有效的促血管生成信号,转化为增强的治疗效果
通过增加局部血管化和骨形成来发挥潜力。目的1.确定双肽的作用
当被 PAH 捕获时,MSC 成骨分化和促血管生成潜力的信号传导。我们
将合成不同密度 RGD 和 GHK 的 PAH。凝胶生物物理特性的变化,
以及捕获的人类 MSC 的成骨和促血管生成反应也将被确定。目标2。
定义肽呈递 PAH 的必要生物物理特性以指导 MSC 成骨
和促血管生成潜力。我们将研究每种肽对成骨分化的作用并
促血管生成潜力,同时测量细胞粘附和基质体积硬度对 MSC 的贡献
回复。目标 3. 展示双肽修饰中的 MSC 的治疗潜力
海藻酸盐促进啮齿动物临界尺寸颅骨骨缺损的血管化和骨修复。我们
将表征植入肽呈递 PAH 中的 MSC 促进骨修复的能力
原位缺陷。将使用以下方法评估植入细胞的作用、骨形成的数量和质量
无创成像方式和组织学分析。拟议的研究具有创新性,因为它
利用两种不同肽与可生物降解水凝胶的活性来增强修复潜力
间充质干细胞。这项研究将为调节骨形成提供一种新的方法,并且这些策略已经
增强基于材料的组织修复疗法的功效的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Kent Leach其他文献
Ultrastructure and growth factor content of equine platelet-rich fibrin gels.
马富含血小板的纤维蛋白凝胶的超微结构和生长因子含量。
- DOI:
10.2460/ajvr.75.4.392 - 发表时间:
2014 - 期刊:
- 影响因子:1
- 作者:
J. Textor;K. Murphy;J. Kent Leach;F. Tablin - 通讯作者:
F. Tablin
J. Kent Leach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Kent Leach', 18)}}的其他基金
MUSCLE: MUsculoSkeletal Clinical Learning Experience Transdisciplinary Musculoskeletal Research Training Program
肌肉:肌肉骨骼临床学习体验跨学科肌肉骨骼研究培训计划
- 批准号:
10410848 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
ORS-ISFR 17th International Biennial Meeting
ORS-ISFR第17届国际双年会
- 批准号:
10540642 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
MUSCLE: MUsculoSkeletal Clinical Learning Experience Transdisciplinary Musculoskeletal Research Training Program
肌肉:肌肉骨骼临床学习体验跨学科肌肉骨骼研究培训计划
- 批准号:
10612446 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10230915 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10591573 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10376368 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
- 批准号:
9320107 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Engineering the innate immune response to Staphaureus infection
设计针对葡萄球菌感染的先天免疫反应
- 批准号:
10212940 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
- 批准号:
9883782 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Engineering the innate immune response to Staphaureus infection
设计针对葡萄球菌感染的先天免疫反应
- 批准号:
9401775 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
相似国自然基金
用于肥厚型心肌病介入治疗的凝血酶-海藻酸盐复合微球消融剂制备机制及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
- 批准号:
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
- 批准号:51803101
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
- 批准号:21706045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
两性离子聚合物/海藻酸锆互穿网络多孔凝胶球的构建及其吸附水中磷酸盐机理研究
- 批准号:51608133
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sprayable Hydrogel Barrier for the Delivery of Adhesion-Preventing Therapeutics
用于提供防粘连治疗的可喷雾水凝胶屏障
- 批准号:
10696561 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Developing Therapeutic Gel Embolic Agents for Arteriovenous Malformation Embolization
开发用于动静脉畸形栓塞治疗的凝胶栓塞剂
- 批准号:
10667726 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
3D Encapsulation, Bioprinting and Controlled Delivery of Functionally Engineered EVs (FEEs)
功能工程电动汽车 (FEE) 的 3D 封装、生物打印和受控交付
- 批准号:
10433850 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
3D Encapsulation, Bioprinting and Controlled Delivery of Functionally Engineered EVs (FEEs)
功能工程电动汽车 (FEE) 的 3D 封装、生物打印和受控交付
- 批准号:
10183784 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
3D Encapsulation, Bioprinting and Controlled Delivery of Functionally Engineered EVs (FEEs)
功能工程电动汽车 (FEE) 的 3D 封装、生物打印和受控交付
- 批准号:
10633258 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别: