Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI
开发 MRgFUS 系统,通过同步功能 MRI 对疼痛回路进行精确靶向神经调节
基本信息
- 批准号:9932739
- 负责人:
- 金额:$ 361.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcousticsAddressAutopsyBRAIN initiativeBrainBrain regionClinicalClinical TrialsComputer softwareDataDeep Brain StimulationDevelopmentDevice or Instrument DevelopmentDevicesDocumentationDoseEcho-Planar ImagingElectrophysiology (science)EngineeringEnhancement TechnologyEnvironmentFeedbackFocused UltrasoundFrequenciesFunctional Magnetic Resonance ImagingFundingGoalsGoldGovernmentGrantHeadHistologyHumanImageIndividualLaboratoriesMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMicroelectrodesModelingMonitorNeuronavigationNeurosciencesNeurosurgeonNociceptionPainPain managementPatient-Focused OutcomesPhysiciansPractice ManagementProceduresProtocols documentationRF coilRadiationRadioRegulatory PathwayResearch PersonnelResolutionSafetySomatosensory CortexStructureSupport SystemSystemTechnologyTemperatureTestingThalamic NucleiTimeTranslatingUltrasonic TransducerUltrasonographyValidationbaseblood oxygen level dependentclinical paindesigndosimetryexperienceimage guidedimprovedin vivoinnovationneuroimagingneuroregulationnext generationnociceptive responsenonhuman primatereal time monitoringrelating to nervous systemsafety testingscale upsoundtooltreatment planningvirtual
项目摘要
This proposal responds to RFA-EB-18-003 HEAL initiative: Translational Development of Devices to Treat
Pain, and aims to develop a next-generation noninvasive neuromodulation system that supports a device-
based strategy for non-addictive pain treatments. Specifically, we will build an integrated magnetic resonance
(MR) image-guided focused ultrasound (MRgFUS) stimulation system for targeted and high precision
modulation of pain regions and circuits. Although there are several devices available on the market to treat
pain, their efficacy is limited by imprecise targeting resulting from insufficient mechanistic data about the
“device-able” targets, and from lack of feedback of effects to modulate the therapy (as stated in the RFA).
Reversible FUS stimulation under MRI guidance (MRgFUS) combines the dual neuromodulation capacity of
low frequency focal ultrasound with simultaneous monitoring of neuromodulation in action using fMRI.
MRgFUS overcomes the limitations of existing pain-treatment devices, and has great potential to improve
patient outcomes through FUS and MRI technologies that enable targeting and control. Our group has
developed an MRgFUS system for non-human primate (NHP) use and successfully modulated neural activity
in the somatosensory cortex as observed by fMRI. Here we propose to improve and translate this early-stage
technology into new non-addictive pain treatments by developing and integrating innovative FUS and MRI
technologies and scaling up the NHP system to humans. We will use the nociceptive pain system of the NHP
as our test model since NHP brains closely resemble the human brain in function and structure. The goals will
be to overcome the substantial technological challenges required to accurately and reliably stimulate identified
regions of cortex, and to navigate precisely under MR guidance to three specific pain targets (thalamic nuclei,
ACC, and PAG/PVG) that are currently used in clinical pain treatments, and to subsequently monitor the
responses of the nociceptive pain circuits using a functional MRI (fMRI) readout. We will focus on the
challenges of targeting focused ultrasound beams safely within the head with high resolution and accuracy, of
providing real-time feedback of the amplitude and distribution of the modulating sound fields at sub-thermal
doses, and of rapid imaging of FUS action on the activity of pain regions and circuits based on blood
oxygenation level dependent (BOLD) signatures and gold-standard microelectrode electrophysiology. We will
develop engineering solutions for neuronavigation and dosimetry that are critical for the clinical deployment of
FUS neuromodulation. The three partnering laboratories will address the following Aims: (Aim 1) Development
of focused ultrasound technology for neuromodulation in humans. (Aim 2) Development of MRI Technology for
neuromodulation. (Aim 3) Validation of MRgFUS neuromodulation of brain pain regions in NHPs. By the end of
the project, we will have a fully developed and validated MRIgFUS system that is ready for pilot clinical trials in
various pain management applications.
该提案响应 RFA-EB-18-003 HEAL 倡议:治疗设备的转化开发
疼痛,旨在开发下一代无创神经调节系统,支持设备-
具体来说,我们将建立一个集成的磁共振。
(MR) 图像引导聚焦超声 (MRgFUS) 刺激系统,具有针对性和高精度
尽管市场上有多种设备可以治疗疼痛区域和回路。
由于疼痛的机制数据不足,其疗效受到不精确的限制。
“设备可实现”的目标,以及缺乏调节治疗效果的反馈(如 RFA 中所述)。
MRI 引导下的可逆 FUS 刺激 (MRgFUS) 结合了双重神经调节能力
低频聚焦超声,同时使用功能磁共振成像监测神经调节的作用。
MRgFUS 克服了现有疼痛治疗设备的局限性,具有巨大的改进潜力
我们的团队通过 FUS 和 MRI 技术实现靶向和控制,实现了患者的治疗结果。
开发了用于非人类灵长类动物 (NHP) 的 MRgFUS 系统并成功调节神经活动
通过功能磁共振成像观察到的体感皮层,我们建议改进和转化这一早期阶段。
通过开发和集成创新的 FUS 和 MRI,将技术引入新的非成瘾性疼痛治疗方法
技术并将 NHP 系统扩展到人类。我们将使用 NHP 的伤害性疼痛系统。
作为我们的测试模型,因为 NHP 大脑在功能和结构上与人类大脑非常相似。
克服准确可靠地刺激已识别的技术所需的重大技术挑战
皮质区域,并在 MR 引导下精确导航至三个特定疼痛目标(丘脑核、
ACC 和 PAG/PVG)目前用于临床疼痛治疗,并随后监测
我们将重点关注使用功能性 MRI (fMRI) 读数的伤害性疼痛回路的反应。
以高分辨率和准确性将聚焦超声波束安全地瞄准头部内的挑战
提供亚热下调制声场的幅度和分布的实时反馈
剂量,以及 FUS 对基于血液的疼痛区域和回路活动的作用的快速成像
氧合水平依赖性(BOLD)特征和金标准微电极电生理学。
开发神经导航和剂量测定的工程解决方案,这对于临床部署至关重要
FUS 神经调节。三个合作实验室将致力于实现以下目标:(目标 1)开发
聚焦超声技术用于人类神经调节的研究(目标 2)MRI 技术的开发。
(目标 3) 验证 MRgFUS 对 NHP 大脑疼痛区域的神经调节作用。
该项目,我们将拥有一个完全开发和验证的 MRIgFUS 系统,该系统已准备好在以下国家进行试点临床试验:
各种疼痛管理应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles F Caskey其他文献
Charles F Caskey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles F Caskey', 18)}}的其他基金
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
- 批准号:
10577371 - 财政年份:2023
- 资助金额:
$ 361.46万 - 项目类别:
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits
将 MR 引导聚焦超声系统用于人体首个疼痛回路精确神经调节
- 批准号:
10805159 - 财政年份:2023
- 资助金额:
$ 361.46万 - 项目类别:
Biophysical and Neural Basis of Focused Ultrasound Stimulation
聚焦超声刺激的生物物理和神经基础
- 批准号:
10415733 - 财政年份:2022
- 资助金额:
$ 361.46万 - 项目类别:
Establishing a dose response for ultrasound neuromodulation
建立超声神经调节的剂量反应
- 批准号:
9229212 - 财政年份:2016
- 资助金额:
$ 361.46万 - 项目类别:
Fast volumetric treatment using multi-focus insonation and thermal amplification
使用多焦点声波和热放大进行快速体积处理
- 批准号:
9335832 - 财政年份:2016
- 资助金额:
$ 361.46万 - 项目类别:
Fast volumetric treatment using multi-focus insonation and thermal amplification
使用多焦点声波和热放大进行快速体积处理
- 批准号:
9111381 - 财政年份:2016
- 资助金额:
$ 361.46万 - 项目类别:
Neuron selective modulation of brain circuitry in non-human primates
非人类灵长类动物脑回路的神经元选择性调节
- 批准号:
9148240 - 财政年份:2015
- 资助金额:
$ 361.46万 - 项目类别:
Neuron selective modulation of brain circuitry in non-human primates
非人类灵长类动物脑回路的神经元选择性调节
- 批准号:
9037262 - 财政年份:2015
- 资助金额:
$ 361.46万 - 项目类别:
Neuron selective modulation of brain circuitry in non-human primates
非人类灵长类动物脑回路的神经元选择性调节
- 批准号:
9272197 - 财政年份:2015
- 资助金额:
$ 361.46万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 361.46万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 361.46万 - 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
- 批准号:
10512775 - 财政年份:2022
- 资助金额:
$ 361.46万 - 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
- 批准号:
10646371 - 财政年份:2022
- 资助金额:
$ 361.46万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 361.46万 - 项目类别: