ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration
ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生
基本信息
- 批准号:9924688
- 负责人:
- 金额:$ 17.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAcuteAddressAlginatesAnimal ModelArchitectureArrhythmiaAutologousBasal laminaBiological ModelsBiomimeticsBlood VesselsCalciumCaliberCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCause of DeathCell SurvivalCell TherapyCell membraneCell-Cell AdhesionCellsCessation of lifeChronicClinical TreatmentCollagenCollagen Type IVConfocal MicroscopyCongestive Heart FailureCorneal EndotheliumCouplingCytoskeletonEFRACEmbryoEndothelial CellsEngineeringEnvironmentEventExtracellular MatrixExtracellular Matrix ProteinsEyeFibrinFibroblastsFibronectinsFrequenciesFutureGap JunctionsGelGene ExpressionGoalsGrowthGrowth FactorHeartHeart DiseasesHeart InjuriesHeart failureHumanIn VitroIndividualInjectableInjectionsInstructionIntegrin BindingLamininMechanicsMitoticMorbidity - disease rateMuscleMuscle satellite cellMyocardialMyocardial InfarctionMyocardiumNanostructuresNatural regenerationPatientsPerformancePopulationPositioning AttributeProcessProliferatingProteinsRiskRodent ModelRoleSeminalShapesSourceStrokeStructureSurfaceTechniquesTechnologyTherapeuticThickTissue EngineeringTissuesVascularizationWorkangiogenesisbasecardiac regenerationcardiac repairclinical applicationclinically relevantcostdensityembryonic stem cellexperimental studyhuman embryonic stem cellimprovedin vitro Modelin vivoin vivo regenerationinduced pluripotent stem cellinnovationmatrigelmechanotransductionmortalitymultiphoton microscopymyogenesisnanonanoengineeringnanofabricationnonhuman primatenovelnovel strategiesparacrineregenerative therapyrepairedscaffoldstemstem cellstissue regenerationtransdifferentiation
项目摘要
Myocardial infarction (MI) is a major cause of cardiac-related death in the US and those fortunate to survive the
acute event suffer from chronic risk of arrhythmia, stroke and congestive heart failure. Repairing the heart is
difficult because cardiomyocytes are post-mitotic and cannot proliferate in order to regenerate damaged tissue.
Recent work has demonstrated that human cardiomyocytes can be derived from embryonic stem (ES) and
induced pluripotent stem (iPS) cells, as well as transdifferentiated from other cells. However, survival and
functional integration of these cardiomyocytes into stereotypical vascularized myocardium is still a major and
unresolved challenge. This proposal describes a breakthrough towards therapeutic cell delivery by wrapping
each cell in a nanostructured extracellular matrix (ECM) scaffold tailor made for enhancing survival,
myogenesis and integration into infarcted myocardium. The key innovation in our approach is the ability to
engineer 50-100 nm thick sheets of ECM with defined protein composition and shape and wrap this around
individual cells or small cell ensembles. This is an improvement over current encapsulation technology
because we can build the ECM around cardiomyocytes and endothelial cells to mimic the ECM that naturally
surrounds these cells in the healthy heart. This is critical, because the ECM is a primary regulator of integrin
binding, growth factor sequestration and mechanotransduction. Our preliminary results demonstrate that our
novel surface-initiated assembly technique can build an ECM nano-scaffold from a range of matrix proteins
and shrink wrap cardiomyocytes and endothelials cells. Further, we have shown using corneal endothelial cells
that we can effectively delivery cells in vivo. This proposal will build upon these results by achieving three
primary aims. One, develop the ECM nano-scaffold technology to shrink wrap cardiomyocytes and endothelial
cells in engineered layers of fibronectin, laminin and collagen type IV that match the matrix in the native
myocardium. Two, interrogate the role of ECM nano-scaffold composition, size and cell population on
maximizing muscle formation, pre-vascularization and contractility in 3D tissue. Looking forward, achieving
these aims will result in an injectable cell delivery technology that has enhanced capability to promote the
retention, survival, integration, myogenesis and vascularization of cardiomyocytes and endothelial cells into the
injured heart. This would have profound consequences by leading towards clinically-relevant therapeutic
strategies to decrease morbidity and mortality in MI and cardiovascular disease patients
心肌梗死 (MI) 是美国心脏相关死亡的主要原因,也是那些幸运幸存的人的主要原因
急性事件有发生心律失常、中风和充血性心力衰竭的慢性风险。修复心脏就是
困难是因为心肌细胞处于有丝分裂后并且不能增殖以再生受损组织。
最近的研究表明,人类心肌细胞可以来源于胚胎干细胞(ES)和
诱导多能干(iPS)细胞,以及从其他细胞转分化的细胞。然而,生存和
这些心肌细胞与典型的血管化心肌的功能整合仍然是一个主要和
未解决的挑战。该提案描述了通过包裹治疗细胞递送的突破
纳米结构细胞外基质(ECM)支架中的每个细胞都是为提高存活率而定制的,
肌发生和整合到梗塞心肌中。我们方法的关键创新是能够
设计 50-100 nm 厚的 ECM 片,具有确定的蛋白质成分和形状,并将其包裹起来
单个细胞或小细胞群。这是对当前封装技术的改进
因为我们可以在心肌细胞和内皮细胞周围构建 ECM,以模仿自然形成的 ECM
围绕着健康心脏中的这些细胞。这很重要,因为 ECM 是整合素的主要调节因子
结合、生长因子隔离和机械转导。我们的初步结果表明,我们的
新型表面引发组装技术可以从一系列基质蛋白构建 ECM 纳米支架
以及收缩包装心肌细胞和内皮细胞。此外,我们还展示了使用角膜内皮细胞
我们可以在体内有效地输送细胞。该提案将以这些成果为基础,通过实现三个目标
主要目标。一、开发ECM纳米支架技术收缩包裹心肌细胞和内皮细胞
纤连蛋白、层粘连蛋白和 IV 型胶原工程层中的细胞与天然基质相匹配
心肌。二、探究ECM纳米支架的组成、大小和细胞群对细胞外基质的作用
最大限度地提高 3D 组织中的肌肉形成、预血管化和收缩性。展望未来,实现目标
这些目标将带来一种可注射细胞输送技术,该技术具有增强促进
心肌细胞和内皮细胞的保留、存活、整合、肌生成和血管化进入
受伤的心。这将通过导致临床相关的治疗产生深远的影响
降低心肌梗死和心血管疾病患者发病率和死亡率的策略
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns.
- DOI:10.1038/s41598-021-87550-y
- 发表时间:2021-06-01
- 期刊:
- 影响因子:4.6
- 作者:Batalov I;Jallerat Q;Kim S;Bliley J;Feinberg AW
- 通讯作者:Feinberg AW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Walter Feinberg其他文献
Adam Walter Feinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Walter Feinberg', 18)}}的其他基金
Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias
用于心律失常体外建模的生物打印人心室
- 批准号:
10325795 - 财政年份:2021
- 资助金额:
$ 17.67万 - 项目类别:
Advanced manufacturing of a bioprosthetic collagen heart valve
生物假体胶原蛋白心脏瓣膜的先进制造
- 批准号:
10258425 - 财政年份:2021
- 资助金额:
$ 17.67万 - 项目类别:
Human Myocardium Engineered Using Developmentally-Inspired Protein Scaffolds
使用受发育启发的蛋白质支架设计人类心肌
- 批准号:
8355924 - 财政年份:2012
- 资助金额:
$ 17.67万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 17.67万 - 项目类别:
CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
- 批准号:
10720137 - 财政年份:2023
- 资助金额:
$ 17.67万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10522820 - 财政年份:2022
- 资助金额:
$ 17.67万 - 项目类别:
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 17.67万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10688211 - 财政年份:2022
- 资助金额:
$ 17.67万 - 项目类别: