Head-mounted Photoacoustic Imaging of Deep-brain Neural Activities in Freely Behaving Animals
自由行为动物深脑神经活动的头戴式光声成像
基本信息
- 批准号:9924909
- 负责人:
- 金额:$ 200.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAreaBehavioralBloodBrainBrain imagingBrain regionCalciumCollaborationsCommunitiesDetectionDiseaseElectrodesEngineeringFluorescence Resonance Energy TransferFocused UltrasoundFunctional ImagingGoalsHeadHealthHemoglobinHippocampus (Brain)ImageImaging TechniquesImaging technologyKnowledgeMeasuresMedicineMembraneMicroscopyMidbrain structureMolecular ProbesMonitorMusNeuronsNeurosciencesOptical MethodsOpticsPathologic ProcessesPenetrationPerformancePhytochromeProtein EngineeringPublicationsReportingResearch PersonnelResolutionScanningSeriesSignal TransductionSpeedSystemTechniquesTechnologyTexasTimeUltrasonic TransducerUltrasonic waveUniversitiesVariantWaterYangawakebasecalcium indicatorcollegedesignexperienceexperimental studyfluorescence imaginghead mounted displayhemodynamicsimaging modalityimaging systemimprovedin vivoinnovationminiaturizemouse modelnoveloptical imagingphotoacoustic imagingrelating to nervous systemscaffoldsensortwo photon microscopyvoltage
项目摘要
Abstract
To capture the normal brain functions, it is critically important to record the neural activities in freely-behaving
animals, with high resolution, high speed, and high throughput. So far, our knowledge about neuronal activity of
awake animals mainly relies on electrode recording, which, however, is invasive. Optical imaging techniques have
been widely used to visualize activity of a large number of neurons in mouse models using fluorescent membrane
voltage or calcium indicators. However, limited by the penetration depth (<1 mm), it is technically challenging to
record the brain functions at depths beyond the cortex layer, such as in the hippocampus. A new large-scale
recording technology with high resolution and deep penetration in freely-behaving animals would be of great utility
for the neuroscience community. Photoacoustic microscopy (PAM) is a promising candidate for this task due to
the relatively deep penetration of ultrasound waves. However, PAM has not been able to image neural activities
of freely-moving animals, because (1) it is challenging to miniaturize the imaging system, (2) there lacks calcium
or voltage probes that can report neural activities in deep brain, and (3) photoacoustic detection sensitivity of
molecular probes is traditionally low due to the strong background signals from blood. In this proposal, we plan
to overcome all of the above technical obstacles and develop head-mounted photoacoustic imaging of deep-brain
neural activities in freely-behaving animals. To achieve this goal, we will follow a three-aim strategy. (1) In Aim 1,
we will develop a miniaturized head-mounted PAM (HM-PAM) system. Several key innovations will reduce the
system footprint to 1 cm3. HM-PAM will achieve a penetration depth of ~3.0 mm with ~10−15 µm resolution, which
is deeper than that with pure optical microscopy. (2) In Aim 2, we will develop novel near-infrared photoswitchable
genetically-encoded calcium indicators (NIR-PS-GECIs) as PA probes. We will engineer and optimize a new class
of NIR-PS-GECIs based on photoacoustic Förster resonance energy transfer (FRET-PA). We have proven that
the photoswitching, which enables differential PA imaging, is currently one of the most effective approaches to
enhance the PA detection sensitivity. We will thus apply fast photoswitching of the NIR-PS-GEICs to enhance the
detection sensitivity of HM-PAM. (3) In Aim 3, the optimized HM-PAM and advanced NIR-PS-GECIs will be
thoroughly characterized and validated in dissociated neurons and in vivo. We will perform proof-of-concept
experiments of deep-brain neural activity in freely-behaving animals. In summary, our proposal will build on the
innovations of the first head-mounted PAM system, the first NIR photoswitching GECIs, and the differential FRET-
PA imaging that rejects the strong background blood signals. This enabling technology will provide a powerful
toolkit for studying neural activities in health, disease, and behavioral states.
抽象的
为了捕捉正常的大脑功能,记录自由行为时的神经活动至关重要
迄今为止,我们对动物神经活动的了解具有高分辨率、高速度和高通量。
清醒的动物主要依靠电极记录,然而,光学成像技术具有侵入性。
已被广泛用于使用荧光膜来可视化小鼠模型中大量神经元的活动
然而,受穿透深度(<1 mm)的限制,技术上具有挑战性。
记录皮质层以外深度的大脑功能,例如海马体中的新大规模。
高分辨率和深度渗透的记录技术对于自由行为的动物将有很大的用处
对于神经科学界来说,光声显微镜(PAM)是这项任务的有希望的候选者。
超声波的穿透力相对较深,但是 PAM 还无法对神经活动进行成像。
自由移动的动物,因为(1)使成像系统小型化具有挑战性,(2)缺乏钙
或可以报告大脑深部神经活动的电压探针,以及(3)光声检测灵敏度
由于来自血液的强背景信号,分子探针传统上较低。在本提案中,我们计划。
克服上述所有技术障碍,开发头戴式深脑光声成像
为了实现这一目标,我们将遵循三个目标策略 (1) 在目标 1 中,
我们将开发一种小型化头戴式 PAM (HM-PAM) 系统,几项关键创新将减少
HM-PAM 的系统占地面积可达 1 cm3,穿透深度约为 3.0 mm,分辨率约为 10−15 µm。
比纯光学显微镜更深 (2) 在目标 2 中,我们将开发新型近红外光开关。
作为 PA 探针的基因编码钙指示剂 (NIR-PS-GECI) 我们将设计和优化一个新类别。
基于光声福斯特共振能量转移 (FRET-PA) 的 NIR-PS-GECI 我们已经证明了这一点。
光开关能够实现差分 PA 成像,是目前最有效的方法之一
因此,我们将应用 NIR-PS-GEIC 的快速光开关来增强 PA 检测灵敏度。
(3) 在目标 3 中,优化的 HM-PAM 和先进的 NIR-PS-GECI 将是
我们将在分离的神经元和体内进行彻底的表征和验证。
总之,我们的建议将建立在自由行为动物的深部大脑神经活动的基础上。
第一个头戴式 PAM 系统、第一个近红外光电开关 GECI 和差分 FRET- 的创新
PA 成像可抑制强烈的背景血液信号,这一技术将提供强大的功能。
用于研究健康、疾病和行为状态下的神经活动的工具包。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladislav Verkhusha其他文献
Vladislav Verkhusha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladislav Verkhusha', 18)}}的其他基金
Near-infrared fluorescent probes and optogenetic tools
近红外荧光探针和光遗传学工具
- 批准号:
10551976 - 财政年份:2017
- 资助金额:
$ 200.72万 - 项目类别:
Calcium biosensors for deep-tissue imaging and spectral multiplexing
用于深层组织成像和光谱复用的钙生物传感器
- 批准号:
9526574 - 财政年份:2017
- 资助金额:
$ 200.72万 - 项目类别:
Near-Infrared Fluorescent Proteins, Biosensors and Optogenetic Tools
近红外荧光蛋白、生物传感器和光遗传学工具
- 批准号:
10163867 - 财政年份:2017
- 资助金额:
$ 200.72万 - 项目类别:
Super Resolution PALM/STORM Microscopy System In Multi-User Facility
多用户设施中的超分辨率 PALM/STORM 显微镜系统
- 批准号:
8640512 - 财政年份:2014
- 资助金额:
$ 200.72万 - 项目类别:
Engineering bacterial phytochromes for near-infrared imaging in mammals
用于哺乳动物近红外成像的细菌光敏色素工程
- 批准号:
9857688 - 财政年份:2014
- 资助金额:
$ 200.72万 - 项目类别:
Engineering bacterial phytochromes for near-infrared imaging in mammals
用于哺乳动物近红外成像的细菌光敏色素工程
- 批准号:
9220835 - 财政年份:2014
- 资助金额:
$ 200.72万 - 项目类别:
Engineering bacterial phytochromes for near-infrared imaging in mammals
用于哺乳动物近红外成像的细菌光敏色素工程
- 批准号:
9024584 - 财政年份:2014
- 资助金额:
$ 200.72万 - 项目类别:
In Vivo Multiphoton Based Imaging of Complex Cancer Cell Behavior
基于体内多光子的复杂癌细胞行为成像
- 批准号:
8231689 - 财政年份:2011
- 资助金额:
$ 200.72万 - 项目类别:
In Vivo Multiphoton Based Imaging of Complex Cancer Cell Behavior
基于体内多光子的复杂癌细胞行为成像
- 批准号:
8336838 - 财政年份:2011
- 资助金额:
$ 200.72万 - 项目类别:
In Vivo Multiphoton Based Imaging of Complex Cancer Cell Behavior
基于体内多光子的复杂癌细胞行为成像
- 批准号:
8699512 - 财政年份:2011
- 资助金额:
$ 200.72万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
家鸽对城市区域大气重金属污染物的暴露响应研究
- 批准号:41701574
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 200.72万 - 项目类别:
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 200.72万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 200.72万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 200.72万 - 项目类别:
Metal-free, genetically encoded reporters for calcium recording with MRI
用于 MRI 钙记录的无金属基因编码报告基因
- 批准号:
10660042 - 财政年份:2023
- 资助金额:
$ 200.72万 - 项目类别: