Sonogenetic control of neurons in a large volume of the rodent brain
啮齿动物大脑大体积神经元的声遗传学控制
基本信息
- 批准号:9925113
- 负责人:
- 金额:$ 264.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAffectAnimalsAreaBRAIN initiativeBehaviorBehavioralBenchmarkingBiological AssayBiomedical EngineeringBrainCaenorhabditis elegansCell Culture TechniquesCellsChimera organismCodeCodon NucleotidesDataDefectDevelopmentDevicesDiffuseDiseaseElectromagneticsElectromyographyElectrophysiology (science)EpilepsyExhibitsFemaleFrequenciesGenerationsGeneticGrantHeartHomologous GeneHumanHypothalamic structureImageIn VitroInterneuronsInvertebratesKineticsLengthLightMammalian CellMammalsMarine InvertebratesMechanicsMethodsMotor NeuronsMusNeurogliaNeuronsNeurosciencesOperative Surgical ProceduresPeptidesPharmacologyPhysiologic pulsePolypsPopulationPropertyProteinsRodentSkinSliceSourceStimulusStructural ModelsSyndromeSystemTechnologyTestingTherapeuticThinnessTransducersTranslatingUltrasonic TransducerUltrasonic waveUltrasonographyVariantadeno-associated viral vectoragouti proteinbasebehavior testbonebrain volumecell typedesigneffectiveness testingefficacy testingexperimental studyfeedinggenetic analysisgenetic approachin vitro Assayin vivoinnovationlithium niobatemechanotransductionmethod developmentmillisecondmodels and simulationmouse modelnovelnovel therapeuticsoptogeneticsresponsesmall moleculespatiotemporalstructural biologytooltranscriptome
项目摘要
Abstract
A key challenge in neuroscience is the development of methods to non-invasively manipulate specific neuronal
cell types in vivo. While recent opto-, chemo- and magneto-genetic approaches have revolutionized our ability
to control both neuronal and non-neuronal cell types, they each suffer from critical drawbacks, including the
inability to deliver light to targets deep within the brain or to large volumes of the brain (opto-), and the lack of
precise temporal control for both chemo- and magneto-genetic approaches. The Chalasani lab has recently
demonstrated a noninvasive method for controlling the activity of neurons using ultrasound, a system they call
sonogenetics. They have demonstrated that mechanosensitive TRP-N channel homologs from C. elegans,
Hydractinia, and Hydra magnipapillata can be used to non-invasively activate mammalian cells both in vitro and
in vivo. They hypothesize that target cells expressing these TRP-N channels are rendered sensitive to
mechanical deformations generated by non-invasive ultrasound waves. This proposal aims to extend the
sonogenetic approach to control specific neuronal populations throughout large volumes of the mouse brain, a
system that would be useful for reversing electrophysiological and behavioral deficits seen in epilepsy, for
example. They will identify channels with non-overlapping ultrasound stimulus ranges by testing variants and
chimeras of the Hydra TRP-N channels in high-throughput imaging and slice culture electrophysiology assays
in vitro, as well as in feeding and electromyography assays in vivo (Aim 1). They also plan to develop a new
lithium niobate-based transducer that will deliver ultrasound throughout the mouse brain. Specifically, they will
use Schroeder’s optimal diffuser design in a device that will generate spatiotemporally incoherent ultrasound
that upon reflection, avoids interference and localized spikes in ultrasound (Aim 2). Finally, they plan to activate
GABAergic inhibitory interneurons broadly throughout the brain to alleviate behavioral and electrophysiological
deficits in mouse models of epilepsy and Rhett’s syndrome. Optogenetic, chemogenetic, and pharmacological
methods have been previously used to control these cell populations, providing benchmarks for comparison.
These studies will develop a noninvasive method for manipulating the activity of specific cells within large
volumes of the rodent brain or body. Further, these methods can be translated into the human system to target
specific cell populations for therapeutic purposes.
抽象的
神经科学中的关键挑战是开发非侵入性操纵特定神经元的方法
细胞类型,近期光学
为了控制神经元和非神经元细胞类型,它们每个都有关键缺点,包括
无法为大脑内部或大脑大脑深处的目标传递光(光(Opto-)),并且缺乏
Chalasani实验室的化学和磁化方法的精确时间控制。
展示了一种使用超声来控制神经元活动的无创方法,他们称之为系统
他们已经证明了秀丽隐杆线虫的机械敏感性TRP-N通道同源物
氢化菌和hydra magpapillata可用于在体外和
在体内。
非侵入性超声波产生的机械变形旨在扩展
在大量小鼠大脑中控制特定神经元流行的超音速方法
系统可用于逆转癫痫中的电溶性和行为缺陷
例如,他们将识别具有非重叠超声刺激范围的通道
在高槽成像和切片培养电子生理学测定中,Hydra TRP-N通道的嵌合体
在体内的体外以及进食和肌电图测定法(AIM 1)。
基于硝酸锂的传感器将传递小鼠大脑的超声波。
在将产生时空不一致的超声的设备中,使用Schroed的最佳扩散器扩散器设计
反思后,避免了超声波(AIM 2)的干扰和局部峰值。
GABA能抑制性中间神经元在整个大脑中脑部脑部和电生理学
癫痫和瑞特的小鼠模型的缺陷。
先前已使用方法来控制这些细胞群体,提供基准进行比较。
这些研究将开发一种无创方法来操纵大型细胞的活性
啮齿动物大脑或身体的体积。
用于治疗目的的特定细胞普及。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sreekanth H. Chalasani其他文献
Two parallel pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans
超声引起的秀丽隐杆线虫行为变化需要两条平行途径
- DOI:
10.1101/2021.10.29.466533 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Uri Magaram;Connor E. Weiss;Aditya Vasan;Kirthi C Reddy;J. Friend;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
Predator-secreted sulfolipids induce fear-like defense responses in C. elegans
捕食者分泌的硫脂在秀丽隐杆线虫中诱导类似恐惧的防御反应
- DOI:
10.1101/153056 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zheng Liu;Maro J. Kariya;Christopher Chute;Amy K. Pribadi;Sarah G. Leinwand;Ada Tong;Kevin P. Curran;Neelanjan Bose;F. Schroeder;J. Srinivasan;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
A many-to-one sensory circuit encodes oxygen levels and drives respiratory behaviour in Danio rerio
斑马鱼的多对一感觉回路对氧气水平进行编码并驱动呼吸行为
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chen;G. Pao;G. Pao;Reginno Villa;Kaila Rosales;Elizabeth DePasquale;A. Groisman;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
Neural mechanisms driving hunger-induced changes in sensory perception and behavior in Caenorhabditis elegans
驱动秀丽隐杆线虫饥饿引起的感官知觉和行为变化的神经机制
- DOI:
10.1101/156109 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
H. Lau;Zachary T. Cecere;Zheng Liu;Claire J. Yang;T. Sharpee;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
Author response: Maximally informative foraging by Caenorhabditis elegans
作者回应:秀丽隐杆线虫的觅食提供了最大的信息量
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Adam J. Calhoun;Sreekanth H. Chalasani;T. Sharpee - 通讯作者:
T. Sharpee
Sreekanth H. Chalasani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sreekanth H. Chalasani', 18)}}的其他基金
Dissecting molecular elements of threat behavior
剖析威胁行为的分子要素
- 批准号:
9365800 - 财政年份:2017
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting molecular elements of threat behavior
剖析威胁行为的分子要素
- 批准号:
10205978 - 财政年份:2017
- 资助金额:
$ 264.34万 - 项目类别:
Developing a noninvasive method to manipulate specific cell types within the mammalian brain
开发一种非侵入性方法来操纵哺乳动物大脑内的特定细胞类型
- 批准号:
9355229 - 财政年份:2016
- 资助金额:
$ 264.34万 - 项目类别:
Genetic Analysis of C. elegans Predator Avoidance
线虫捕食者回避的遗传分析
- 批准号:
8681539 - 财政年份:2013
- 资助金额:
$ 264.34万 - 项目类别:
Genetic Analysis of C. elegans Predator Avoidance
线虫捕食者回避的遗传分析
- 批准号:
8506622 - 财政年份:2013
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
10396076 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C. elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
10887010 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
9754246 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
10197766 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C. elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
8586560 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
相似国自然基金
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模拟增温对高寒草甸节肢动物“晨起”时间的影响及其生态学效应
- 批准号:32301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三江源国家公园黄河源园区食草野生动物与放牧家畜冲突的强度、影响及未来情景
- 批准号:42371283
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Sodium channel mutations as a possible cause for primary dysautonomia
钠通道突变可能是原发性自主神经功能障碍的原因
- 批准号:
10586393 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Cellular Mechanisms of State-Dependent Processing in Visual Cortex
视觉皮层状态相关处理的细胞机制
- 批准号:
10736387 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Contributions of Astrocyte Kir4.1/5.1 Channels to Disordered Breathing in Rett Syndrome
星形胶质细胞 Kir4.1/5.1 通道对 Rett 综合征呼吸障碍的影响
- 批准号:
10606795 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别: