Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
基本信息
- 批准号:9923630
- 负责人:
- 金额:$ 71.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAutomobile DrivingBehaviorBiological ModelsBreast Cancer cell lineBreast Epithelial CellsCRISPR libraryCancer Cell GrowthCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexComputer ModelsDNA Sequence AlterationDataDevelopmentDiseaseDrug resistanceFeedbackFlow CytometryGene DosageGene ExpressionGene MutationGene ProteinsGenerationsGenesGeneticLeadLibrariesLinkMachine LearningMalignant NeoplasmsMapsMeasurementMeasuresMethodologyMethodsModelingModernizationMolecularMutateMutationNormal CellPathway interactionsPatternPharmaceutical PreparationsPhenotypePhosphorylationPlayPredictive Cancer ModelProteinsProteomicsProto-Oncogene Proteins c-aktReagentRegulationResearchResistanceRoleSignal PathwaySignal TransductionSystems BiologyTechniquesTechnologyTestingTherapeutic InterventionTranslatingWorkbasecancer cellcancer typecell behaviordesignexperimental studymathematical modelmelanomanovel strategiespersonalized medicinephosphoproteomicspredictive modelingproteomic signatureresponsescreeningtargeted treatmenttool
项目摘要
Title: Reverse Sensitivity Analysis for Identifying Proteomics Signatures of Cancer
Abstract
Cancer is a complex disease in which genetic disruptions in cell signaling networks are known to play a
significant role. A major aim of cancer systems biology is to build models that can predict the impact of these
genetic disruptions to guide therapeutic interventions (i.e. personalized medicine). A prominent driver of
cancer cell growth is signaling pathway deregulation from mutations in key regulatory nodes and loss/gain in
gene copy number (CNV). However, current mathematical modeling approaches do not adequately capture the
impact of these genetic changes. Reasons for this include the poorly understood layers of regulation between
gene expression and protein activity, and limitations in most modeling and protein measurement technologies.
In addition, there is a paucity of overarching hypotheses that can link specific gene expression or mutation
patterns to the cancer phenotype. Recent work by our group has resolved some of the technical challenges that
have hindered the application of proteomics technologies to cancer systems biology research. It has also
suggested a new approach for using quantitative proteomics data to understand mechanisms driving cancer
cell behavior. Using an ultrasensitive, targeted proteomics platform that can measure both abundance and
phosphorylation of proteins present at only hundreds of copies per cell, we found that signaling pathways
appeared to be controlled by only a limited number of key nodes whose activity is tightly regulated through low
abundance and feedback phosphorylation. We propose to build on these findings by critically testing the
hypothesis that CNV and genetic mutations dysregulate signaling pathways in cancer by shifting control
from tightly regulated nodes to poorly regulated ones. This will be done by systematically identifying key
regulatory nodes of normal and cancer cells using CRISPRa/i screens, determine the relationship between
protein abundance and signaling pathway activities using ultrasensitive targeted proteomics and
phosphoproteomics and then use these data to semi-automatically generate mathematical models of the
functional topology of the signaling pathways. Specifically, we propose to: 1) Use targeted CRISPR gene
perturbation libraries to identify the regulatory topologies of signaling pathways important in cancer and how
they are disrupted by common cancer mutations, 2) Use the CRISPR perturbation and proteomics data to
semi-automatically build predictive models of cancer cell signaling pathways, and 3) Combine modeling and
perturbation screens to understand how feedback regulation in cancer contributes to drug resistance. This
work will result in simplified, computationally tractable yet mechanistic models of signaling pathways and
provide network maps of feedback and crosstalk circuits that can be used to rapidly map the regulatory state of
cells. Most important, it will provide a generic platform for translating protein abundance and phosphorylation
patterns into a “state” snapshot of cancers that can lead to predicting their response to specific drugs.
标题:用于识别癌症蛋白质组学特征的反向灵敏度分析
抽象的
癌症是一种复杂的疾病,其中已知细胞信号网络中的遗传破坏可以发挥作用
重要作用。癌症系统生物学的主要目的是建立可以预测这些影响的模型
引导热干预措施(即个性化医学)的遗传破坏。一个杰出的司机
癌细胞的生长是关键调节节点突变的信号通路通路,并在
基因拷贝数(CNV)。但是,当前的数学建模方法不能充分捕获
这些遗传变化的影响。原因包括在
大多数建模和蛋白质测量技术中的基因表达和蛋白质活性以及局限性。
另外,总体假设很少可以连接特定的基因表达或突变
癌症表型的模式。我们小组最近的工作解决了一些技术挑战
阻碍了蛋白质组学技术在癌症系统生物学研究中的应用。它也有
提出了一种使用定量蛋白质组学数据来了解驱动癌症的机制的新方法
细胞行为。使用超敏感的靶向蛋白质组学平台,可以衡量丰度和
蛋白质的磷酸化仅以每个细胞的数百份,我们发现信号通路
似乎仅由有限数量的关键节点控制,其活动受到低调的调节
抽象和反馈磷酸化。我们建议通过批判性测试来建立这些发现
假设CNV和基因突变通过转移对照来使癌症中的信号传导途径失调
从严格调节的节点到受调节良好的节点。这将通过系统地识别密钥来完成
使用CRISPRA/I屏幕对正常和癌细胞的调节淋巴结,确定
蛋白质丰度和信号通路活动使用超敏感的靶向蛋白质组学和
磷蛋白质组学,然后使用这些数据半自动地生成数学模型
信号通路的功能拓扑。具体来说,我们建议:1)使用靶向CRISPR基因
扰动文库以确定信号通路的调节拓扑中重要
它们被普通癌症突变所破坏,2)使用CRISPR扰动和蛋白质组学数据
半自动上建立癌细胞信号通路的预测模型,3)结合建模和
扰动筛选以了解癌症的反馈调节如何促进耐药性。这
工作将导致信号通路的简化,计算上可拖动但机械的机械模型
提供反馈和串扰电路的网络图,可用于快速映射监管状态
细胞。最重要的是,它将提供一个通用平台,用于翻译蛋白质丰度和磷酸化
模式进入癌症的“状态”快照,可以预测其对特定药物的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Jun Qian其他文献
Wei-Jun Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei-Jun Qian', 18)}}的其他基金
Robust Mass Spectrometric Protein/Peptide Assays for Type 1 Diabetes Clinical Applications
适用于 1 型糖尿病临床应用的稳健质谱蛋白质/肽检测
- 批准号:
10730900 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
- 批准号:
10395957 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
9918021 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10238054 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10448306 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10020391 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
- 批准号:
10615630 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
- 批准号:
10449766 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Mindfulness and Behavior Change to Reduce Cardiovascular Disease Risk in Older People with HIV
正念和行为改变可降低老年艾滋病毒感染者的心血管疾病风险
- 批准号:
10762220 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别: