Integrated RF and B-mode Deformation Analysis for 4D Stress Echocardiography

用于 4D 应力超声心动图的集成 RF 和 B 模式变形分析

基本信息

  • 批准号:
    8614454
  • 负责人:
  • 金额:
    $ 81.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-18 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Stress echocardiography is a clinically established, cost-effective technique for detecting and characterizing coronary artery disease by imaging the left ventricle (LV) of the heart at rest and then after either exercise or pharmacologically-induced stress to reveal ischemia. However, acquisitions are heavily operator dependent, two-dimensional (2D), and interpretation is generally based on qualitative assessment. While a variety of quan- titative 2D approaches have been proposed in the research literature, none have been shown to be superior to the still highly variable qualitative visual comparison of rest/stress echocardiographic image sequences for detecting ischemic disease. Here, we propose that the way forward must focus on a new computational im- age analysis paradigm for quantitative 4D (three spatial dimensions plus time) stress echocardiography. Our strategy integrates information derived from both radiofrequency (RF) and B-mode echocardiographic images acquired using a matrix array probe. The integrated analysis system will yield accurate and robust measures of strain and strain rate - at rest, stress and differentiallly between rest and stress - that will identify my- ocardial tissue at-risk after dobutamine-induced stress. This work will involve the development of novel (1) phase-sensitive, correlation-based RF ultrasound speckle tracking to estimate mid-wall displacements, (2) ma- chine learning techniques to localize the LV bounding surfaces and their displacements from B-mode data, (3) a meshless integration approach based on radial basis functions (RBFs) and Bayesian reasoning/sparse coding to estimate dense spatiotemporal parameters of strain and strain rate and (4) non-rigid registration of rest and stress image sequences to develop unique, 3D differential deformation parameters. The quantitative approach will be validated with implanted sonomicrometers and microsphere-derived flows using an acute canine model of stenosis. The ability of deformation and differential deformation derived from 4D stress echocardiography to detect new myocardial tissue at-risk in the presence of existing infarction will then be determined in a hybrid acute/chronic canine model of infarction with superimposed ischemia. The technique will be translated to hu- mans and evaluated by measuring the reproducibility of our deformation and differential deformation parameters in a small cohort of subjects. Three main collaborators will team on this work. A group led by Matthew O'Donnell from the University of Washington will develop the RF-based speckle tracking methods. An image analysis group led by the PI James Duncan at Yale University will develop methods for segmentation, shape tracking, dense displacement integration and strain computation. A cardiology/physiology group under Dr. Albert Sinusas at Yale will perform the acute and chronic canine studies and the human stress echo studies. A consultant from Philips Medical Systems will work with the entire team to bridge the ultrasound image acquisition technology.
项目概要/摘要 负荷超声心动图是一种临床上建立的、具有成本效益的技术,用于检测和表征 通过对休息时心脏的左心室 (LV) 进行成像,然后在运动或运动后进行冠状动脉疾病的成像 药理学诱导的应激以揭示缺血。然而,收购很大程度上依赖于运营商, 二维 (2D),解释通常基于定性评估。虽然各种全 研究文献中已经提出了初步的二维方法,但没有一个被证明是优越的 与静息/应激超声心动图图像序列的仍然高度可变的定性视觉比较 检测缺血性疾病。在这里,我们建议前进的道路必须集中在新的计算模型上 定量 4D(三个空间维度加时间)负荷超声心动图的年龄分析范例。我们的 策略整合了来自射频 (RF) 和 B 型超声心动图图像的信息 使用矩阵阵列探头获得。集成分析系统将产生准确而稳健的测量结果 应变和应变率 - 在休息、压力以及休息和压力之间的差异 - 这将识别我的- 多巴酚丁胺诱导的应激后心组织处于危险之中。这项工作将涉及小说的开发 (1) 相敏、基于相关的射频超声散斑跟踪来估计中壁位移,(2)ma- 用于定位 LV 边界表面及其来自 B 模式数据的位移的学习技术,(3) 基于径向基函数 (RBF) 和贝叶斯推理/稀疏编码的无网格积分方法 估计应变和应变率的密集时空参数,以及(4)静止和应变的非刚性配准 应力图像序列以开发独特的 3D 微分变形参数。定量方法 将使用急性犬模型通过植入式声测微计和微球衍生流进行验证 的狭窄。 4D 应力超声心动图产生的变形和差异变形的能力 在存在现有梗塞的情况下检测新的有风险的心肌组织,然后将在混合中确定 伴有叠加缺血的急性/慢性犬梗塞模型。该技术将被转化为hu- 并通过测量变形和差异变形参数的再现性进行评估 在一小群受试者中。三位主要合作者将合作开展这项工作。马修·奥唐纳领导的小组 华盛顿大学的研究人员将开发基于射频的散斑跟踪方法。图像分析组 由 PI James Duncan 领导的耶鲁大学将开发分割、形状跟踪、密集的方法 位移积分和应变计算。耶鲁大学 Albert Sinusas 博士领导下的心脏病学/生理学小组 将进行急性和慢性犬类研究以及人类压力回波研究。飞利浦顾问 医疗系统公司将与整个团队合作,搭建超声图像采集技术的桥梁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES S DUNCAN其他文献

JAMES S DUNCAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES S DUNCAN', 18)}}的其他基金

Quantitative Multimodal Imaging Biomarkers for Combined Locoregional and Immunotherapy of Liver Cancer
用于肝癌局部区域和免疫联合治疗的定量多模态成像生物标志物
  • 批准号:
    10707985
  • 财政年份:
    2016
  • 资助金额:
    $ 81.97万
  • 项目类别:
Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment
定量多模态图像指导改善肝癌治疗
  • 批准号:
    9982672
  • 财政年份:
    2016
  • 资助金额:
    $ 81.97万
  • 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
  • 批准号:
    9890853
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
  • 批准号:
    10376296
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8725724
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8795003
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10666518
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8526506
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10436344
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8312541
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:

相似海外基金

TRANSCRIPTOME AND EPIGENOME MAPPING IN DOPAMINE NEURONS FROM THE OPIOID EXPOSED HUMAN BRAIN
暴露于阿片类药物的人脑多巴胺神经元的转录组和表观基因组图谱
  • 批准号:
    10203901
  • 财政年份:
    2019
  • 资助金额:
    $ 81.97万
  • 项目类别:
TRANSCRIPTOME AND EPIGENOME MAPPING IN DOPAMINE NEURONS FROM THE OPIOID EXPOSED HUMAN BRAIN
暴露于阿片类药物的人脑多巴胺神经元的转录组和表观基因组图谱
  • 批准号:
    10653847
  • 财政年份:
    2019
  • 资助金额:
    $ 81.97万
  • 项目类别:
TRANSCRIPTOME AND EPIGENOME MAPPING IN DOPAMINE NEURONS FROM THE OPIOID EXPOSED HUMAN BRAIN
暴露于阿片类药物的人脑多巴胺神经元的转录组和表观基因组图谱
  • 批准号:
    10434065
  • 财政年份:
    2019
  • 资助金额:
    $ 81.97万
  • 项目类别:
TRANSCRIPTOME AND EPIGENOME MAPPING IN DOPAMINE NEURONS FROM THE OPIOID EXPOSED HUMAN BRAIN
暴露于阿片类药物的人脑多巴胺神经元的转录组和表观基因组图谱
  • 批准号:
    9816173
  • 财政年份:
    2019
  • 资助金额:
    $ 81.97万
  • 项目类别:
TRANSCRIPTOME AND EPIGENOME MAPPING IN DOPAMINE NEURONS FROM THE OPIOID EXPOSED HUMAN BRAIN
暴露于阿片类药物的人脑多巴胺神经元的转录组和表观基因组图谱
  • 批准号:
    10015254
  • 财政年份:
    2019
  • 资助金额:
    $ 81.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了