Ribose-seq profile and analysis of ribonucleotides in DNA of oxidatively-stressed and cancer cells
氧化应激细胞和癌细胞 DNA 中核糖核苷酸的核糖测序谱和分析
基本信息
- 批准号:9921385
- 负责人:
- 金额:$ 27.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Antimycin ABase Excision RepairsBiological AssayBiological MarkersCancer BiologyCancer EtiologyCancer cell lineCell LineCellsCleaved cellComprehensionDNADNA DamageDNA MaintenanceDNA RepairDNA Repair GeneDNA Repair PathwayDNA biosynthesisDNA sequencingDNA-Directed DNA PolymeraseDataDefectDeoxyribonucleotidesDeoxyriboseDetectionDevelopmentDistalEmbryoExcisionExcision RepairExposure toFibroblastsGenetic TranscriptionGenome StabilityGenomic DNAGenomic InstabilityGenomicsHela CellsHumanHydrogen PeroxideIn VitroInvestigationLaboratoriesLibrariesLinkLiverLyaseMalignant NeoplasmsMalignant neoplasm of liverMapsMethodsMismatch RepairMitochondriaMitochondrial DNAModelingMusMutationMutation SpectraNatureNormal CellNormal tissue morphologyNuclearNucleotide Excision RepairNucleotidesOxidation-ReductionOxidative StressOxidesParaquatPathway interactionsPhenotypePhysiologicalPrimary carcinoma of the liver cellsProcessRNAReactive Oxygen SpeciesRegulationReproducibilityRibonucleasesRibonucleosidesRibonucleotidesRiboseRoleRotenoneSaccharomyces cerevisiaeSaccharomycetalesSamplingSiteStressSuperoxide DismutaseTechniquesTechnologyTestingTimeTissuesVariantYeastscancer cellcatalasedesignendonucleaseenvironmental stressorgenome integrityhepatocellular carcinoma cell lineinhibitor/antagonistinsightinterestknock-downmouse genomemutantpreservationreconstitutionreference genomerepair enzymerepairedstressorsugarsuperoxide dismutase 1tooltoxicanttumoryeast genome
项目摘要
Project Summary
Ribonucleoside monophosphates (rNMPs), the subunits of RNA, are the most common non-canonical
nucleotides found in genomic DNA. Inactivation of ribonuclease (RNase) H2, which is the major player in the
removal of rNMPs from nuclear DNA (nDNA), allowed detection of over one million rNMPs in the mouse
genome and ~2,400 rNMPs in the budding yeast genome. rNMPs distort the DNA double helix, modulating or
altering DNA functions and increasing DNA fragility and instability. There is a need to determine where rNMP
sites are in DNA, especially in cells with abnormal genome stability, like cancer cells. We recently developed a
method, ribose-seq, to map rNMPs present in genomic DNA (Koh et al., Nature Methods, 2015). We applied
ribose-seq to yeast Saccharomyces cerevisiae RNase H2 deficient cells, and we revealed widespread but not
random distribution of rNMPs with several hotspots in nDNA and mitochondrial DNA (mtDNA).
A proven, though poorly explored, cause of rNMP inclusion in DNA is oxidative stress, which, through
reactive oxygen species (ROS), converts deoxyribose to ribose both in the deoxyribonucleotide pool and within
DNA. Moreover, ROS not only produce abasic DNA, which is repaired via the base excision repair (BER)
pathway, but also abasic RNA. Because we recently demonstrated that the BER apurinic/apyrimidinic
endonuclease Ape1 cleaves also abasic RNA, we aim to determine if BER is involved in removal of rNMPs
from DNA. Currently, it is unknown whether and how the profile of rNMP incorporation in genomic DNA
changes upon oxidative stress, and whether there is any link with cancer phenotype. Are there genomic sites
(i.e. transcriptionally active regions) that are more prone to rNMP formation upon exposure to ROS? Is there a
correlation between rNMP and mutation sites occurring in oxidatively stressed and/or cancer cells?
In Aim 1, applying ribose-seq, we will reveal for the first time, the spectrum of rNMP incorporation in
different conditions of oxidative stress in nDNA and mtDNA of S. cerevisiae RNase H2-deficient cells. The
rNMP profiles will be analyzed and compared with those of the same yeast cells not exposed to the oxidative
stressors, and also with mutation spectra of the same ROS-exposed cells. Because RNase H2 activity for
rNMP removal was not found in mitochondria, mtDNA could be particularly sensitive to rNMP incorporation
during oxidative stress. Thus, in Aim 2 we will perform profile and analysis of rNMPs in mtDNA of yeast and
normal mammalian RNase H2-proficient cells exposed to oxidative stress and sensitized to it by using mutants
and inhibitors of BER factors. rNMP maps will be also compared with mutation maps. In Aim 3, we will perform
profile and analysis of rNMPs in mtDNA of cancer cells. Cancer cells from different human hepatic cancer cell
lines, from a selection of human bioptic hepatocarcinoma samples (tumoral and distal liver tissues) and HeLa
cells reconstituted with different functional variants of Ape1, will be processed to obtain purified mtDNA, which
will be analyzed for rNMP distribution and hotspots of incorporation to identify significant biomarkers.
项目概要
单磷酸核糖核苷 (rNMP) 是 RNA 的亚基,是最常见的非典型物质
基因组 DNA 中发现的核苷酸。核糖核酸酶 (RNase) H2 失活,这是
从核 DNA (nDNA) 中去除 rNMP,从而可以在小鼠体内检测到超过 100 万个 rNMP
基因组和芽殖酵母基因组中约 2,400 个 rNMP。 rNMPs 扭曲 DNA 双螺旋,调节或
改变 DNA 功能并增加 DNA 脆弱性和不稳定性。需要确定rNMP在哪里
位点位于 DNA 中,尤其是在基因组稳定性异常的细胞中,例如癌细胞。我们最近开发了一个
核糖测序方法可对基因组 DNA 中存在的 rNMP 进行定位(Koh 等人,NatureMethods,2015)。我们申请了
对酿酒酵母 RNase H2 缺陷细胞进行核糖测序,我们发现广泛存在但并非如此
rNMP 的随机分布,在 nDNA 和线粒体 DNA (mtDNA) 中具有多个热点。
rNMP 包含在 DNA 中的一个已被证实的原因是氧化应激,尽管对此研究还很少。
活性氧 (ROS),将脱氧核糖核苷酸池中和内部的脱氧核糖转化为核糖
脱氧核糖核酸。此外,ROS不仅产生脱碱基DNA,通过碱基切除修复(BER)进行修复
途径,还有脱碱基RNA。因为我们最近证明了 BER 无嘌呤/无嘧啶
核酸内切酶 Ape1 也切割脱碱基 RNA,我们的目的是确定 BER 是否参与 rNMP 的去除
来自DNA。目前,尚不清楚 rNMP 是否以及如何掺入基因组 DNA 中。
氧化应激引起的变化,以及是否与癌症表型有任何联系。是否有基因组位点
(即转录活性区域)在暴露于 ROS 时更容易形成 rNMP?有没有一个
rNMP 与氧化应激和/或癌细胞中发生的突变位点之间的相关性?
在目标 1 中,应用核糖测序,我们将首次揭示 rNMP 掺入谱
酿酒酵母 RNase H2 缺陷细胞的 nDNA 和 mtDNA 氧化应激的不同条件。这
rNMP 谱将被分析并与未暴露于氧化的相同酵母细胞的谱进行比较。
应激源,以及相同 ROS 暴露细胞的突变谱。因为 RNase H2 活性为
线粒体中未发现 rNMP 去除,mtDNA 可能对 rNMP 掺入特别敏感
在氧化应激期间。因此,在目标 2 中,我们将对酵母和线粒体 DNA 中的 rNMP 进行概况分析和分析。
正常哺乳动物 RNase H2 熟练细胞暴露于氧化应激并通过使用突变体对其敏感
和 BER 因素的抑制剂。 rNMP 图谱还将与突变图谱进行比较。在目标 3 中,我们将执行
癌细胞 mtDNA 中 rNMP 的概况和分析。来自不同人类肝癌细胞的癌细胞
细胞系,来自精选的人类活检肝癌样本(肿瘤和远端肝组织)和 HeLa
用 Ape1 的不同功能变体重组的细胞将被处理以获得纯化的 mtDNA,
将分析 rNMP 分布和掺入热点,以确定重要的生物标志物。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frequency and patterns of ribonucleotide incorporation around autonomously replicating sequences in yeast reveal the division of labor of replicative DNA polymerases.
- DOI:10.1093/nar/gkab801
- 发表时间:2021-10-11
- 期刊:
- 影响因子:14.9
- 作者:Xu P;Storici F
- 通讯作者:Storici F
Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2.
- DOI:10.1093/nar/gkx723
- 发表时间:2017-11-02
- 期刊:
- 影响因子:14.9
- 作者:Malfatti MC;Balachander S;Antoniali G;Koh KD;Saint-Pierre C;Gasparutto D;Chon H;Crouch RJ;Storici F;Tell G
- 通讯作者:Tell G
Mapping ribonucleotides embedded in genomic DNA to single-nucleotide resolution using Ribose-Map.
- DOI:10.1038/s41596-021-00553-x
- 发表时间:2021-07
- 期刊:
- 影响因子:14.8
- 作者:Gombolay, Alli L.;Storici, Francesca
- 通讯作者:Storici, Francesca
Addendum: Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA.
附录:核糖测序:嵌入基因组 DNA 中的核糖核苷酸的全局作图。
- DOI:10.1038/s41592-019-0505-9
- 发表时间:2019
- 期刊:
- 影响因子:48
- 作者:Koh,KyungDuk;Balachander,Sathya;Hesselberth,JayR;Storici,Francesca
- 通讯作者:Storici,Francesca
Capture of Ribonucleotides in Yeast Genomic DNA Using Ribose-Seq.
使用核糖测序捕获酵母基因组 DNA 中的核糖核苷酸。
- DOI:10.1007/978-1-4939-9736-7_2
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Balachander,Sathya;Yang,Taehwan;Newnam,Gary;El-Sayed,WaleedMM;Koh,KyungDuk;Storici,Francesca
- 通讯作者:Storici,Francesca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca Storici其他文献
Francesca Storici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca Storici', 18)}}的其他基金
Development of a protein-driven gene targeting technology
蛋白质驱动的基因靶向技术的开发
- 批准号:
7784427 - 财政年份:2009
- 资助金额:
$ 27.63万 - 项目类别:
Development of a protein-driven gene targeting technology
蛋白质驱动的基因靶向技术的开发
- 批准号:
7661081 - 财政年份:2009
- 资助金额:
$ 27.63万 - 项目类别:
相似国自然基金
灵芝酸D通过GRB2激活DNA碱基切除修复减轻神经元损伤改善AD病症的机制研究
- 批准号:82304745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一氧化氮通过调控碱基切除修复途径缓解冷藏桃果实mtDNA氧化损伤的分子机理
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
DNA损伤修复蛋白OGG1对肺部炎症的调控及其表观遗传机制
- 批准号:31900424
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
线粒体DNA碱基修复调控因子APE1和TFAM在癫痫发病及神经损伤中的作用研究
- 批准号:81873786
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
DNA糖基化酶的单分子检测及其在癌症早期诊断中的应用研究
- 批准号:21705097
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 27.63万 - 项目类别:
Modeling the Responsiveness of Sensitive Populations to Genotoxic Agents Using DNA Repair Inhibitors
使用 DNA 修复抑制剂模拟敏感人群对基因毒性药物的反应性
- 批准号:
10734425 - 财政年份:2023
- 资助金额:
$ 27.63万 - 项目类别:
Analysis of the predictability of lung cancer using DNA Repair functional assays and cryopreserved blood samples of the PLCO prospective cohort
使用 DNA 修复功能测定和 PLCO 前瞻性队列冷冻保存的血液样本分析肺癌的可预测性
- 批准号:
10641094 - 财政年份:2023
- 资助金额:
$ 27.63万 - 项目类别:
Control mechanisms of 5-hydroxymethylcytosine metabolism in human cells
人体细胞5-羟甲基胞嘧啶代谢的控制机制
- 批准号:
10629908 - 财政年份:2023
- 资助金额:
$ 27.63万 - 项目类别: