Developing a systems biology platform for predicting, preventing, and treating drug side effects
开发用于预测、预防和治疗药物副作用的系统生物学平台
基本信息
- 批准号:9922312
- 负责人:
- 金额:$ 75.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse drug effectAdverse eventAffectAlgorithmsAnimal ModelAntidepressive AgentsAntineoplastic AgentsAntipsychotic AgentsBiochemicalBioinformaticsCell physiologyCessation of lifeClinicalClinical TrialsComplexCorpus striatum structureCoupledDataData SetDatabasesDevelopmentDoseDyskinetic syndromeEconomic BurdenEtiologyExposure toExpression ProfilingFailureFunctional disorderFunding MechanismsGene ExpressionGene Expression ProfileGenerationsGenesGoldHealth Care CostsHealthcare SystemsHospitalizationHospitalsIn VitroIndustryInfrastructureKnowledgeLesionLevodopaLiteratureMachine LearningModelingMucositisMusNeuronsParkinson DiseasePathogenesisPatient-Focused OutcomesPharmaceutical PreparationsPharmacodynamicsPharmacologic SubstancePharmacologyPhasePlayProteinsPsychiatric therapeutic procedureRadioReportingRodentRodent ModelRoleSafetySerious Adverse EventStandardizationSystemSystems BiologyTardive DyskinesiaTestingTherapeuticTherapeutic UsesTissuesValidationadverse drug reactionbasecancer therapychemoradiationchemotherapyclinical developmentcommercializationcomputational platformdata pipelinedrug developmentdrug discoveryimprovedin vitro testingin vivometabolomicsnovel therapeuticsoff-patentpharmacokinetics and pharmacodynamicspharmacovigilancepreventprogramsresponsescreeningside effectsuccesstranscriptome sequencingtranscriptomics
项目摘要
Project Summary
Adverse drug reactions (ADRs), more commonly known as drug side effects, are estimated to cause over
200,000 deaths in the US annually, are responsible for 6.5% of all hospital admissions, and 28% of clinical trial
failures. ADRs are estimated to increase healthcare costs by $136 billion per year in the USA alone. Current
safety and modeling efforts that are commonly used in the pharma industry (such as PK/PD) do not elucidate
the complex pathophysiology underlying ADRs. These safety and modeling approaches are used
predominantly to quantitatively understand exposure-response relationships for clinical dosing, but with a few
exceptions do not focus on the cellular pharmacodynamic mechanisms of why drugs cause ADRs. Elucidating
the downstream and systemic effects of pharmaceuticals is critical to understanding ADR pathogenesis and
developing safer therapies. Drugs can affect multiple proteins and each protein that they modulate may play
roles in multiple cellular processes. Systems biology and bioinformatics approaches coupled with machine
learning are crucial for understanding the multi-factorial pathophysiology of ADRs. In Phase I of this program,
we developed an in vitro transcriptomics based computational platform that 1) predicts drug-side effect liability
equivalent to current gold-standard approaches that require considerably more information about the
compound and its effects, 2) defines genes that are relevant to ADR pathophysiology, and 3) identifies
therapeutically beneficial compounds for the ADR. Based on the computational platform, we discovered a
repurposing opportunity for an off-patent, non-FDA approved drug in Parkinson’s Disease that we are currently
pursuing towards clinical development. This drug significantly improves levodopa’s efficacy, without
exacerbating the drug’s major side effect which often precludes levodopa’s use. In Phase II of this proposal,
we will continue to develop and expand the ADR computational platform. Further, we will hone our focus on
two key clinically and commercially relevant ADRs: antipsychotic induced tardive dyskinesia and radio-/chemo-
therapy induced mucosal inflammation. We will generate rich datasets for these ADRs to both validate our in
vitro platform with in vivo data and to understand the pathophysiology of these ADRs at an unprecedented
level. Further, we will use the datasets to generate computational predictions for discovering/repurposing drugs
to improve safety in psychiatric and cancer treatments. The best predictions will be subsequently tested in vitro
and developed through partnerships and external funding mechanisms.
项目概要
药物不良反应 (ADR),通常称为药物副作用,估计会导致过度
美国每年有 20 万人死亡,占所有入院人数的 6.5%,占临床试验的 28%
据估计,仅在美国,ADR 每年就会增加 1,360 亿美元的医疗费用。
制药行业常用的安全性和建模工作(例如 PK/PD)并未阐明
使用这些安全性和建模方法来了解 ADR 背后的复杂病理生理学。
主要是为了定量了解临床剂量的暴露-反应关系,但也有一些
例外情况并不关注药物导致 ADR 的细胞药效机制。
药物的下游和系统性影响对于了解 ADR 发病机制和
开发更安全的疗法可以影响多种蛋白质以及它们调节的每种蛋白质。
系统生物学和生物信息学方法与机器相结合在多种细胞过程中的作用。
学习对于理解 ADR 的多因素病理生理学至关重要。
我们开发了一个基于体外转录组学的计算平台,1)预测药物副作用的可能性
相当于当前的黄金标准方法,需要更多关于
化合物及其作用,2) 定义与 ADR 病理生理学相关的基因,以及 3) 确定
基于计算平台,我们发现了一种对 ADR 有治疗作用的化合物。
重新利用我们目前正在研究的一种治疗帕金森病的专利到期、未经 FDA 批准的药物的机会
该药物正在进行临床开发,显着提高左旋多巴的疗效,而无需任何药物。
加剧药物的主要副作用,这通常会阻碍左旋多巴的使用。
我们将继续开发和扩展 ADR 计算平台,此外,我们将重点关注。
两个关键的临床和商业相关的不良反应:抗精神病药引起的迟发性运动障碍和放射/化疗
我们将为这些 ADR 生成丰富的数据集,以验证我们的研究成果。
具有体内数据的体外平台,以前所未有的方式了解这些 ADR 的病理生理学
此外,我们将使用数据集来生成用于发现/重新利用药物的计算预测。
以提高精神科和癌症治疗的安全性,随后将在体外测试最佳预测。
并通过伙伴关系和外部融资机制开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aarash Bordbar其他文献
Aarash Bordbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aarash Bordbar', 18)}}的其他基金
Preclinical development of a novel therapeutic for Parkinson's disease
帕金森病新型疗法的临床前开发
- 批准号:
10913244 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别:
Preclinical development of a novel therapeutic for Parkinson's disease
帕金森病新型疗法的临床前开发
- 批准号:
10324284 - 财政年份:2021
- 资助金额:
$ 75.45万 - 项目类别:
Preclinical development of a novel therapeutic for Parkinson's disease
帕金森病新型疗法的临床前开发
- 批准号:
10619432 - 财政年份:2021
- 资助金额:
$ 75.45万 - 项目类别:
Development of a metabolomics and machine learning based high-throughput screening platform for data-driven drug discovery
开发基于代谢组学和机器学习的高通量筛选平台,用于数据驱动的药物发现
- 批准号:
10343786 - 财政年份:2018
- 资助金额:
$ 75.45万 - 项目类别:
Improving safety and efficacy of platelet transfusion through systems biology
通过系统生物学提高血小板输注的安全性和有效性
- 批准号:
9347295 - 财政年份:2015
- 资助金额:
$ 75.45万 - 项目类别:
Improving safety and efficacy of platelet transfusion through systems biology
通过系统生物学提高血小板输注的安全性和有效性
- 批准号:
8977072 - 财政年份:2015
- 资助金额:
$ 75.45万 - 项目类别:
Improving red blood cell transfusion through systems biology
通过系统生物学改善红细胞输注
- 批准号:
8714738 - 财政年份:2014
- 资助金额:
$ 75.45万 - 项目类别:
Improving red blood cell transfusion through systems biology
通过系统生物学改善红细胞输注
- 批准号:
9049084 - 财政年份:2014
- 资助金额:
$ 75.45万 - 项目类别:
相似国自然基金
基于机器学习和影像学多参数融合的心血管不良事件风险预测模型研究
- 批准号:82370513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GNB3联合光谱CT冠周脂肪组学预警ACS后心血管不良事件的模型构建
- 批准号:82302186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
- 批准号:72304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界数据的药物相互作用相关不良事件风险评估及其管理策略研究
- 批准号:72304010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别:
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别:
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别:
Bacterial metabolism of catechol-O-methyltransferase inhibitors alters drug efficacy and toxicity
儿茶酚-O-甲基转移酶抑制剂的细菌代谢改变药物疗效和毒性
- 批准号:
10606184 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别:
Processivity and Catalytic Mechanism of Aldosterone Synthase
醛固酮合酶的持续合成能力和催化机制
- 批准号:
10600520 - 财政年份:2023
- 资助金额:
$ 75.45万 - 项目类别: