Biocatalytic approaches to antiepileptic drug targets

抗癫痫药物靶标的生物催化方法

基本信息

  • 批准号:
    9922670
  • 负责人:
  • 金额:
    $ 1.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Proposal Summary Discovering small molecule ligands with a high affinity for voltage-gated sodium channels and specificity for disease relevant isoforms is challenging. Common synthetic strategies require prefunctionalization to introduce heteroatoms and larger functional groups, rendering the molecules difficult to handle, purify, and subject to further diversification. Nature approaches such synthetic bottlenecks by constructing simple cores and decorating scaffolds later on in biosynthesis. Chemists take inspiration from Nature’s techniques in designing late-stage C–H functionalization routes, but the ability of enzymes to generate molecular complexity is unmatched by state-of-the-art synthetic methods. Thus, biocatalysis represents a unique approach to tackling the synthetic challenges associated with drug design. Paralytic shellfish toxins (PSTs) are an untapped source of antiepileptic drug targets. Over 50 naturally derived PSTs have been identified, and the select few that have been assessed for binding to voltage-gated sodium channels (VGSCs) have demonstrated the ability to block VGSCs. This molecular response corresponds to physical responses desired in antiepileptic drug targets. The study of PSTs as antiepileptic drug targets has been hindered by challenging synthetic routes and the inability to isolate sufficient quantities of most of the >50 analogs. Gene clusters associated with paralytic shellfish toxin biosynthesis have been identified, enabling opportunities to leverage enzymes capable of chemistry inaccessible to even the most skilled chemist. This proposal describes strategies to elucidate the paralytic shellfish toxin biosynthetic pathway, evaluate enzyme substrate scopes, and isolate novel compounds from biocatalytic reactions for analysis with VGSCs using electrophysiological techniques. In summary, this work aims to diversify the PST scaffold using PST biosynthetic enzymes from cyanobacteria, enabling chemical transformations on complex, heteroatom-rich molecules that are otherwise intractable. The methods established in this proposal will accelerate the discovery of new antiepileptic drugs by developing new chemical reactions using biocatalysts from the biosynthetic pathway of known VGSC blocking compounds.
提案摘要 发现对电压门控钠通道具有高亲和力的小分子配体,特异性 疾病相关的同工型具有挑战性。 杂原子和较大的官能团,使分子difficalt处理,并受到 进一步的多样化。 稍后在生物合成中装饰脚手架。 晚期熟 由最新的合成方法无与伦比。 与药物设计相关的合成挑战。 瘫痪的贝类毒素(PST)是未开发的抗癫痫药物的来源。 PST已被构成,并且评估了与电压门控钠结合的精选的少数 通道(VGSC)已经证明了阻止的能力 抗癫痫药物的物理反应是对PSTS的研究。 受到挑战的合成路线和隔离> 50> 50的可比性量的无效性的阻碍 类似物。 甚至最熟练的化学家都无法获得化学能力的酶。 提案描述了阐明麻痹性贝类毒素生物合成途径的策略,评估酶 底物示波器和分离出从生物催化反应的新型化合物,用于使用VGSC进行分析 电生理技术。 总而言之,这项工作旨在使用来自蓝细菌的PST生物合成酶多样化PST支架, 在复合物,富含杂种的分子上实现化学转化,原本是棘手的 在本提案中建立的方法,通过开发新的新抗脑电图,加速发现新的抗脑电皮药物 使用来自已知VGSC阻断化合物的生物合成途径的生物催化剂的化学反应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

April Lukowski其他文献

April Lukowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('April Lukowski', 18)}}的其他基金

Interrogating novel biosynthetic sources for the production of polybrominated diphenyl ethers
探究生产多溴二苯醚的新型生物合成来源
  • 批准号:
    10471212
  • 财政年份:
    2021
  • 资助金额:
    $ 1.2万
  • 项目类别:
Interrogating novel biosynthetic sources for the production of polybrominated diphenyl ethers
探究生产多溴二苯醚的新型生物合成来源
  • 批准号:
    10673973
  • 财政年份:
    2021
  • 资助金额:
    $ 1.2万
  • 项目类别:
Interrogating novel biosynthetic sources for the production of polybrominated diphenyl ethers
探究生产多溴二苯醚的新型生物合成来源
  • 批准号:
    10313961
  • 财政年份:
    2021
  • 资助金额:
    $ 1.2万
  • 项目类别:
Biocatalytic approaches to antiepileptic drug targets
抗癫痫药物靶标的生物催化方法
  • 批准号:
    9761129
  • 财政年份:
    2019
  • 资助金额:
    $ 1.2万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
  • 批准号:
    62371403
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
  • 批准号:
    10587024
  • 财政年份:
    2023
  • 资助金额:
    $ 1.2万
  • 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
  • 批准号:
    10607139
  • 财政年份:
    2023
  • 资助金额:
    $ 1.2万
  • 项目类别:
Harnessing iron acquisition to hinder enterobacterial pathogenesis
利用铁的获取来阻碍肠细菌的发病机制
  • 批准号:
    10651432
  • 财政年份:
    2023
  • 资助金额:
    $ 1.2万
  • 项目类别:
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
  • 批准号:
    10717825
  • 财政年份:
    2023
  • 资助金额:
    $ 1.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了