Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
基本信息
- 批准号:9920211
- 负责人:
- 金额:$ 70.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnxietyAnxiety DisordersAssessment toolBehaviorBiological MarkersCalibrationCharacteristicsClassificationClinicalClinical Assessment ToolClinical assessmentsCognitiveCollectionComplexComputersDataData CompromisingData SetDatabasesDiagnosisDiagnosticDimensionsDiscriminationDiseaseEnvironmental Risk FactorFeedbackFemaleGenomicsHourIndividualInternetInternet of ThingsIntervention StudiesLengthLinkLongevityMachine LearningMeasuresMedicineMental DepressionMental disordersMethodsMolecular GeneticsMoodsNeurocognitiveNeurocognitive DeficitNeuropsychological TestsNeurosciencesOutcomePaperPathway interactionsPerformancePhenotypePopulationPrecision Medicine InitiativePreparationPreventive InterventionProceduresPsychiatryPsychometricsPsychopathologyPsychotic DisordersPublic DomainsResearchResearch Domain CriteriaSamplingScreening procedureSensitivity and SpecificitySeveritiesSpeedStructureSymptomsTabletsTestingTimeTranslational ResearchUnited States National Institutes of HealthValidationbasebehavior measurementcognitive performancecomputerizedcrowdsourcingdata miningdata qualitydigitalgenomic variationimprovedindividualized preventioninstrumentmalemobile computingneuroimagingneuropsychiatric disordernovelnovel strategiesopen sourceprecision medicineprotective factorspsychiatric symptomresponsesymptom clustertheoriestooltraitvalidation studies
项目摘要
Efforts to include behavioral measures in large-scale studies as envisioned by precision medicine are
hampered by the time and expertise required. Paper-and-pencil tests currently dominating clinical assessment
and neuropsychological testing are plainly unfeasible. The NIH Toolbox contains many computerized tests and
clinical assessment tools varying in feasibility. Unique in the Toolbox is the Penn Computerized Neurocognitive
Battery (CNB), which contains 14 tests that take one hour to administer. CNB has been validated with
functional neuroimaging and in multiple normative and clinical populations across the lifespan worldwide, and
is freely available for research. Clinical assessment tools are usually devoted to specific disorders, and scales
vary in their concentration on symptoms that are disorder specific. We have developed a broad assessment
tool (GOASSESS), which currently takes about one hour to administer. These instruments were constructed,
optimized and validated with classical psychometric test theory (CTT), and are efficient as CTT allows.
However, genomic studies require even more time-efficient tools that can be applied massively.
Novel approaches, based on item response theory (IRT) can vastly enhance efficiency of testing and
clinical assessment. IRT shifts the emphasis from the test to the items composing it by estimating item
parameters such as “difficulty” and “discrimination” within ranges of general trait levels. IRT helps shorten the
length of administration without compromising data quality, and for many domains leads to computer adaptive
testing (CAT) that further optimizes tests to individual abilities. We propose to develop and validate adaptive
versions of the CNB and GOASSESS, resulting in a neurocognitive and clinical screener that, using machine
learning tools, will be continually optimized, becoming shorter and more precise as it is deployed. The tool will
be in the Toolbox available in the public domain. We have item-level information to perform IRT analyses on
existing data and use this information to develop CAT implementations and generate item pools for adaptive
testing. Our Specific Aims are: 1. Use available itemwise data on the Penn CNB and the GOASSESS and add
new tests and items to generate item pools for extending scope while abbreviating tests using IRT-CAT and
other methods. The current item pool will be augmented to allow large selection of items during CAT
administration and add clinical items to GOASSESS. New items will be calibrated through crowdsourcing. 2.
Produce a modular CAT version of a neurocognitive and clinical assessment battery that covers major RDoC
domains and a full range of psychiatric symptoms. We have implemented this procedure on some CNB tests
and clinical scales and will apply similar procedures to remaining and new tests as appropriate. 3. Validate the
CAT version in 100 individuals with psychosis spectrum disorders (PS), 100 with depression/anxiety disorders
(DA), and 100 healthy controls (HC). We will use this dataset to implement and test data mining algorithms
that optimize prediction of specific outcomes. All tests, algorithms and normative data will be in the toolbox.
正如精准医学所设想的那样,将行为测量纳入大规模研究的努力是
目前主导临床评估的纸笔测试阻碍了所需的时间和专业知识。
NIH 工具箱包含许多计算机化测试和神经心理学测试显然是不可行的。
工具箱中独特的临床评估工具的可行性各不相同。
电池 (CNB) 包含 14 项测试,需要 1 小时才能完成 CNB 的验证。
功能性神经影像学以及全球多个正常和临床人群的生命周期,以及
可免费用于研究的临床评估工具通常专门用于特定的疾病和量表。
他们对特定疾病症状的关注程度各不相同,我们已经制定了广泛的评估。
工具(GOASSESS),目前构建这些工具需要大约一小时,
使用经典心理测试理论 (CTT) 进行优化和验证,并且在 CTT 允许的范围内有效。
然而,基因组研究需要更省时、可以大规模应用的工具。
基于项目反应理论(IRT)的新方法可以极大地提高测试和测试的效率
IRT 将重点从测试转移到通过估计项目组成测试的项目。
一般特质水平范围内的“难度”和“歧视”等参数有助于缩短 IRT。
管理时间长而不影响数据质量,并且对于许多领域来说导致计算机自适应
我们建议开发和验证适应性测试(CAT),进一步优化个人能力测试。
CNB 和 GOASSESS 的版本,产生了一种神经认知和临床筛查仪,使用机器
学习工具将随着部署不断优化,变得更短、更精确。
位于公共领域可用的工具箱中,我们拥有可用于执行 IRT 分析的项目级信息。
现有数据并使用此信息来开发 CAT 实施并生成用于自适应的项目池
我们的具体目标是: 1. 使用 Penn CNB 和 GOASSESS 上可用的逐项数据并添加
新的测试和项目,用于生成项目池以扩展范围,同时使用 IRT-CAT 和缩写测试
其他方法将扩大当前的项目池,以允许在 CAT 期间进行大量项目选择。
管理并将临床项目添加到 GOASSESS 新项目将通过众包进行校准 2。
生成涵盖主要 RDoC 的神经认知和临床评估电池的模块化 CAT 版本
我们已在一些 CNB 测试中实施了此程序。
和临床量表,并将酌情对剩余的和新的测试应用类似的程序。
100 名精神病谱系障碍 (PS) 患者和 100 名抑郁/焦虑症患者的 CAT 版本
(DA) 和 100 个健康对照 (HC) 我们将使用该数据集来实现和测试数据挖掘算法。
所有测试、算法和规范数据都将位于工具箱中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben C. Gur其他文献
Cognitive changes in schizophrenia-a critical look
精神分裂症的认知变化——批判性的审视
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Ruben C. Gur;J. Ragland;R. Gur - 通讯作者:
R. Gur
Ruben C. Gur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben C. Gur', 18)}}的其他基金
Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
- 批准号:
10356829 - 财政年份:2019
- 资助金额:
$ 70.95万 - 项目类别:
Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
- 批准号:
10112310 - 财政年份:2019
- 资助金额:
$ 70.95万 - 项目类别:
Multimodal brain maturation indices modulating psychopathology and neurocognition
调节精神病理学和神经认知的多模式大脑成熟指数
- 批准号:
9275046 - 财政年份:2015
- 资助金额:
$ 70.95万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8665498 - 财政年份:2012
- 资助金额:
$ 70.95万 - 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
- 批准号:
8237585 - 财政年份:2012
- 资助金额:
$ 70.95万 - 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
- 批准号:
8657481 - 财政年份:2012
- 资助金额:
$ 70.95万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8501689 - 财政年份:2012
- 资助金额:
$ 70.95万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8305318 - 财政年份:2012
- 资助金额:
$ 70.95万 - 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
- 批准号:
8463034 - 财政年份:2012
- 资助金额:
$ 70.95万 - 项目类别:
Changes in neural response to eating after bariatric surgery: MRI results
减肥手术后饮食神经反应的变化:MRI 结果
- 批准号:
8607936 - 财政年份:2010
- 资助金额:
$ 70.95万 - 项目类别:
相似国自然基金
电针抑制AdipoR1蛋白磷酸化调控VTA相关环路功能改善焦虑症恐惧记忆障碍的机制研究
- 批准号:82374254
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
腹侧海马星形胶质细胞参与焦虑症发病的机制研究
- 批准号:82371513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高尿素通过调控REDD1/mTORC1信号通路促进慢性肾病伴发焦虑症的机制研究
- 批准号:82370739
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
前额叶皮层-丘脑前核环路在焦虑症诱发记忆障碍中的作用机制及电针干预研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
外泌体miR-208-3p靶向MAPK6调控NF-κB通路参与广泛性焦虑症神经微环境炎症的作用及机制研究
- 批准号:82160642
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
- 批准号:
10604723 - 财政年份:2023
- 资助金额:
$ 70.95万 - 项目类别:
Machine Learning Phenotypic De Novo Drug Design
机器学习表型从头药物设计
- 批准号:
10762633 - 财政年份:2023
- 资助金额:
$ 70.95万 - 项目类别:
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 70.95万 - 项目类别:
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 70.95万 - 项目类别: