Mechanotransduction in Heart Development and Regeneration
心脏发育和再生中的机械传导
基本信息
- 批准号:9919380
- 负责人:
- 金额:$ 40.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdhesionsAdultAgonistAnimal ModelArchitectureAtomic Force MicroscopyBindingBiomechanicsBirthCadherin DomainCadherinsCancer BiologyCardiacCardiac MyocytesCardiac developmentCell ProliferationCell physiologyCell-Cell AdhesionCellsComplexCouplesCytoskeletonDepositionDevelopmentDown-RegulationElasticityExtracellular MatrixExtracellular Matrix ProteinsFibronectinsFocal AdhesionsHeartHeart InjuriesHeart failureHumanITGA5 geneInjuryIntegrinsIntercalated discKnock-outLaboratoriesLeadLifeMammalian CellMechanicsMediatingMolecularMuscleMuscle CellsMyocardial InfarctionN-CadherinNatural regenerationNeonatalNuclearNuclear TranslocationPathologicPathway interactionsPatientsPhosphotransferasesPhysiologicalPlayRoleSignal TransductionSystemTestingTissuesTranscription CoactivatorWorkalpha cateninbeta cateninblood pumpcardiac regenerationcardiogenesisextracellulargenetic manipulationheart cellheart functionimprovedimproved functioningin vivoinhibitor/antagonistinjury and repairinsightloss of functionmechanical forcemechanical loadmechanical propertiesmechanotransductionmouse modelnovelnovel therapeutic interventionpolyacrylamide hydrogelspostnatalpreclinical studyreceptorregenerativeresponserhotumor
项目摘要
Mechanical forces play a critical role in regulating cellular function. Cells sense and transduce
mechanical signals through cell-cell adhesions and cell-extracellular matrix (ECM) adhesions.
Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. Thus, they are
unable to effectively replace dying cells in the injured heart. Loss of regenerative potential within the
first week of postnatal life coincides with downregulation of the ECM protein fibronectin and its
receptor alpha5 integrin, while the N-cadherin/catenin adhesion complex re-distributes to the bipolar
ends of the myocyte, creating a specialized cell-cell contact called the intercalated disc (ICD).
N-cadherin junctions are stabilized at the ICD by the dynamic binding of the intracellular cadherin
domain to the actin cytoskeleton via beta- and alpha-catenins. In recent work our laboratory
demonstrated that the simultaneous depletion of both alpha-catenins (aE-/aT-catenin double
knockout (DKO)) in the heart resulted in aberrant formation of ICDs and sustained myocyte
proliferation beyond the first week of life. Importantly, our preclinical studies showed that temporal
inactivation of alpha-catenins in adult hearts following myocardial infarction increases Yap activity,
cardiomyocyte proliferation, and improves cardiac function. Yap has been identified as a nuclear
relay of mechanical signals, but the molecular mechanisms that lead to Yap activation are poorly
understood. We hypothesize that alpha-catenin-regulated cytoskeleton organization couples signals
from N-cadherin to integrin in an integrated mechanochemical signaling system to ultimately control
cardiomyocyte proliferation. It is proposed that this novel proliferative signal requires Rho-driven
changes in cytoskeletal tension, and increased focal adhesion signaling. The following interrelated
aims are proposed: (1) To determine the molecular mechanisms by which alpha-catenin regulates
tension-driven cardiomyocyte proliferation. (2) To determine whether alpha5 integrin and fibronectin
matrix assembly are required to transduce the proliferative signal in alpha-catenin-deficient
cardiomyocytes. (3) To determine whether actomyosin-mediated tension via ROCK activation is
sufficient to induce ECM assembly, tissue stiffening, and proliferation in the heart. This project will
lead to an integrated molecular understanding of how cardiomyocytes coordinate signals from
cadherins, integrins, and cytoskeletal network into a proliferative response, and may suggest new
therapeutic strategies to stimulate cardiac regeneration in heart failure patients.
机械力在调节细胞功能中起着至关重要的作用。细胞感知和转导
通过细胞-细胞粘附和细胞-细胞外基质(ECM)粘附的机械信号。
出生后不久,哺乳动物心脏的肌肉细胞就失去了分裂的能力。因此,他们是
无法有效替代受损心脏中垂死的细胞。体内再生潜力丧失
产后第一周恰逢 ECM 蛋白纤连蛋白及其相关蛋白的下调
受体α5整合素,而N-钙粘蛋白/连环蛋白粘附复合物重新分布到双极
肌细胞末端,形成一种特殊的细胞与细胞接触,称为闰盘(ICD)。
N-钙粘蛋白连接通过细胞内钙粘蛋白的动态结合而稳定在 ICD 处
通过β-和α-连环蛋白将结构域连接到肌动蛋白细胞骨架。在我们实验室最近的工作中
证明同时耗尽两种 α-连环蛋白(aE-/aT-连环蛋白双
心脏基因敲除(DKO))导致 ICD 的异常形成和持续的心肌细胞
增殖超过生命第一周。重要的是,我们的临床前研究表明,时间
心肌梗塞后成人心脏中 α-连环蛋白的失活会增加 Yap 活性,
心肌细胞增殖,改善心脏功能。 Yap已被确定为核
机械信号的传递,但导致 Yap 激活的分子机制很差
明白了。我们假设 α-连环蛋白调节的细胞骨架组织耦合信号
在集成的机械化学信号系统中从 N-钙粘蛋白到整合素,最终控制
心肌细胞增殖。有人提出这种新颖的增殖信号需要 Rho 驱动
细胞骨架张力的变化和粘着斑信号传导的增加。以下是相互关联的
提出的目标是:(1)确定α-连环蛋白调节的分子机制
张力驱动的心肌细胞增殖。 (2) 确定α5整合素和纤连蛋白是否
需要矩阵组装来转导α-连环蛋白缺陷的增殖信号
心肌细胞。 (3) 确定肌动球蛋白通过 ROCK 激活介导的张力是否有效
足以诱导 ECM 组装、组织硬化和心脏增殖。该项目将
导致对心肌细胞如何协调信号的综合分子理解
钙粘蛋白、整合素和细胞骨架网络参与增殖反应,并可能提示新的
刺激心力衰竭患者心脏再生的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLENN Lawrence RADICE其他文献
GLENN Lawrence RADICE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLENN Lawrence RADICE', 18)}}的其他基金
Role of the cytoskeleton in cardiac regeneration
细胞骨架在心脏再生中的作用
- 批准号:
8374029 - 财政年份:2012
- 资助金额:
$ 40.25万 - 项目类别:
Role of the cytoskeleton in cardiac regeneration
细胞骨架在心脏再生中的作用
- 批准号:
8509019 - 财政年份:2012
- 资助金额:
$ 40.25万 - 项目类别:
Cadherin/Catenin Function in Arrhythmogenesis
钙粘蛋白/连环蛋白在心律失常发生中的功能
- 批准号:
7208480 - 财政年份:2007
- 资助金额:
$ 40.25万 - 项目类别:
Cadherin/Catenin Function in Arrhythmogenesis
钙粘蛋白/连环蛋白在心律失常发生中的功能
- 批准号:
7356008 - 财政年份:2007
- 资助金额:
$ 40.25万 - 项目类别:
Cadherin/Catenin Function in Arrhythmogenesis
钙粘蛋白/连环蛋白在心律失常发生中的功能
- 批准号:
7568905 - 财政年份:2007
- 资助金额:
$ 40.25万 - 项目类别:
Cadherin/Catenin Function in Arrhythmogenesis
钙粘蛋白/连环蛋白在心律失常发生中的功能
- 批准号:
7759616 - 财政年份:2007
- 资助金额:
$ 40.25万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 40.25万 - 项目类别:
Calpain/talin/MLCP axis in pulmonary endothelial barrier regulation
钙蛋白酶/talin/MLCP轴在肺内皮屏障调节中的作用
- 批准号:
10522290 - 财政年份:2022
- 资助金额:
$ 40.25万 - 项目类别:
miRNA-regulation at focal adhesions establishes vascular mechanohomeostasis
粘着斑处的 miRNA 调节建立血管机械稳态
- 批准号:
10656557 - 财政年份:2022
- 资助金额:
$ 40.25万 - 项目类别:
miRNA-regulation at focal adhesions establishes vascular mechanohomeostasis
粘着斑处的 miRNA 调节建立血管机械稳态
- 批准号:
10510869 - 财政年份:2022
- 资助金额:
$ 40.25万 - 项目类别:
Single-component optogenetic tools to bidirectionally control RhoA in mechanotransduction
在力转导中双向控制 RhoA 的单组分光遗传学工具
- 批准号:
10521872 - 财政年份:2022
- 资助金额:
$ 40.25万 - 项目类别: