Structure-based design of coronavirus subunit vaccines
基于结构的冠状病毒亚单位疫苗设计
基本信息
- 批准号:9914088
- 负责人:
- 金额:$ 83.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-21 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelBiochemicalBiological ModelsCoronavirusCoronavirus spike proteinDataDevelopmentEngineeringEnsureEpitopesEvaluationFaceFutureGoalsImmune responseImmune systemImmunizeImmunodominant EpitopesImmunologicsIndividualInfectionKnock-in MouseLengthLifeMasksMeasuresMiddle East Respiratory Syndrome CoronavirusMolecularMolecular ConformationMonoclonal AntibodiesMusPathogenicityPlayPolysaccharidesProteinsRecombinantsResearchRoleSARS coronavirusSiteSolidStructureSubunit VaccinesSurfaceVaccine DesignVaccinesViralViral VectorVirionVirusVirus Diseasesbasecombatcoronavirus receptordesignimmunogenicimmunogenicityimprovedindexingnanoparticleneutralizing antibodynonhuman primatenovelnovel coronavirusnovel strategiespreservationprotective efficacyreceptor bindingscaffoldvaccine candidatevaccine developmentvaccine efficacy
项目摘要
Project Summary
Viral subunit vaccines are safe and convenient, but generally suffer low efficacy. Our overall hypothesis is that
an intrinsic limitation is associated with subunit vaccine designs in which artificially exposed surfaces of subunit
vaccines contain epitopes unfavorable for vaccine efficacy. The receptor-binding domain (RBD) of a
coronavirus spike protein consists of a core subdomain that serves as the structural scaffold and a receptor-
binding motif (RBM) that binds the receptor and contains neutralizing epitopes. The RBDs are prime
candidates for subunit vaccine designs. In preliminary studies, we identified epitopes on the core subdomain of
MERS coronavirus (MERS-CoV) RBD that were buried in the full-length spike protein but became artificially
exposed in recombinant RBDs. We further showed that these epitopes severely reduce vaccine efficacy by
inducing strong non-neutralizing immune responses and distracting the host immune system from reacting to
the neutralizing epitopes on the RBM. This novel finding reveals an intrinsic limitation of viral subunit vaccines
that the vaccine field had been unaware of. In this proposal, we aim to characterize this intrinsic limitation and
establish novel approaches to overcome it. We use the RBDs from highly pathogenic coronaviruses, including
MERS-CoV and SARS coronavirus (SARS-CoV), as the model system. This proposal contains three major
design approaches for coronavirus RBD vaccines. First, we will identify and characterize the artificially
exposed unfavorable epitopes on the core subdomain of coronavirus RBDs. To this end, we introduce a novel
concept, neutralizing immunogenicity index (NII), to evaluate the contribution of each epitope to the overall
vaccine efficacy. We will mask the negative epitopes on the core subdomain through glycan shielding or
resurfacing. This design enhances the efficacy of the individually optimized RBD vaccines. Second, we will
construct chimeric RBDs containing the core subdomain from one coronavirus RBD as the structural scaffold
and the RBM from another coronavirus RBD as the immunogenic sites. The unfavorable epitopes on the core
subdomain should have been silenced from the first design approach. The interface of the core subdomain and
RBM will be optimized to maximize the stability of the chimeric RBD vaccines. This design prepares us for the
emergence of highly pathogenic coronaviruses in the future. Third, we will construct nanoparticle-carried
coronavirus RBD vaccines in a way that artificially exposed unfavorable epitopes on the core subdomain are
re-buried at the molecular interfaces to enhance the RBD vaccine's efficacy. We will use mice to evaluate the
immunogenicity of the above engineered RBD vaccines and will use animal models (including hDPP4-knock-in
(KI)) mice and non-human primates) to assess the selected RBD vaccines against live coronavirus challenge.
Overall, this research establishes the artificially exposed unfavorable epitopes as the intrinsic limitation of viral
subunit vaccines and finds novel approaches to overcome it. Therefore, this research holds the promise of
making subunit vaccines a more successful and widely used strategy in combating virus infections.
项目概要
病毒亚单位疫苗安全、方便,但疗效普遍较低。我们的总体假设是
亚单位疫苗设计存在一个内在的局限性,其中亚单位的人工暴露表面
疫苗含有不利于疫苗功效的表位。受体结合域 (RBD)
冠状病毒刺突蛋白由充当结构支架的核心子结构域和受体组成
结合基序 (RBM) 结合受体并包含中和表位。 RBD 是素数
亚单位疫苗设计的候选者。在初步研究中,我们鉴定了核心子域上的表位
MERS 冠状病毒 (MERS-CoV) RBD 被埋藏在全长刺突蛋白中,但被人为改造
暴露在重组 RBD 中。我们进一步表明,这些表位严重降低了疫苗功效
诱导强烈的非中和免疫反应并分散宿主免疫系统的反应
RBM 上的中和表位。这一新发现揭示了病毒亚单位疫苗的内在局限性
疫苗领域对此一无所知。在本提案中,我们的目标是描述这种内在的局限性和
建立新的方法来克服它。我们使用来自高致病性冠状病毒的 RBD,包括
MERS-CoV 和 SARS 冠状病毒(SARS-CoV)作为模型系统。该提案主要包含三项内容
冠状病毒 RBD 疫苗的设计方法。首先,我们将识别并表征人工
暴露了冠状病毒 RBD 核心子域上的不利表位。为此,我们向大家介绍一本小说
概念,中和免疫原性指数(NII),评估每个表位对整体的贡献
疫苗功效。我们将通过聚糖屏蔽或屏蔽核心子域上的负表位
重新铺面。这种设计增强了单独优化的 RBD 疫苗的功效。其次,我们将
构建含有一种冠状病毒 RBD 核心子结构域的嵌合 RBD 作为结构支架
以及来自另一种冠状病毒 RBD 的 RBM 作为免疫原性位点。核心上的不利表位
子域应该从第一种设计方法中被静音。核心子域的接口和
RBM 将被优化,以最大限度地提高嵌合 RBD 疫苗的稳定性。这个设计让我们做好准备
未来高致病性冠状病毒的出现。第三,我们将构建纳米粒子承载
冠状病毒 RBD 疫苗的方式是人为暴露核心子域上的不利表位
重新埋入分子界面以增强 RBD 疫苗的功效。我们将使用小鼠来评估
上述工程RBD疫苗的免疫原性,并将使用动物模型(包括hDPP4敲入
(KI)) 小鼠和非人类灵长类动物)评估所选 RBD 疫苗对活冠状病毒攻击的抵抗力。
总的来说,这项研究将人为暴露的不利表位确定为病毒的内在限制
亚单位疫苗并找到克服它的新方法。因此,这项研究有望
使亚单位疫苗成为对抗病毒感染的更成功和更广泛使用的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lanying Du其他文献
Lanying Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lanying Du', 18)}}的其他基金
Project 2: Nanobodies as Novel Entry Inhibitors of Pandemic Viruses
项目 2:纳米抗体作为大流行病毒的新进入抑制剂
- 批准号:
10522811 - 财政年份:2022
- 资助金额:
$ 83.92万 - 项目类别:
Rational design and evaluation of novel mRNA vaccines against MERS-CoV
针对 MERS-CoV 的新型 mRNA 疫苗的合理设计和评估
- 批准号:
10335159 - 财政年份:2021
- 资助金额:
$ 83.92万 - 项目类别:
Rational design and evaluation of novel mRNA vaccines against MERS-CoV
针对 MERS-CoV 的新型 mRNA 疫苗的合理设计和评估
- 批准号:
10410839 - 财政年份:2021
- 资助金额:
$ 83.92万 - 项目类别:
Structure-based design of coronavirus subunit vaccines
基于结构的冠状病毒亚单位疫苗设计
- 批准号:
10415747 - 财政年份:2021
- 资助金额:
$ 83.92万 - 项目类别:
Structure-based design of coronavirus subunit vaccines
基于结构的冠状病毒亚单位疫苗设计
- 批准号:
10397563 - 财政年份:2021
- 资助金额:
$ 83.92万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10411118 - 财政年份:2020
- 资助金额:
$ 83.92万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10168173 - 财政年份:2020
- 资助金额:
$ 83.92万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10662297 - 财政年份:2020
- 资助金额:
$ 83.92万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10456313 - 财政年份:2020
- 资助金额:
$ 83.92万 - 项目类别:
A novel and effective nanobody to prevent and treat Zika virus infection
一种预防和治疗寨卡病毒感染的新型有效纳米抗体
- 批准号:
9920081 - 财政年份:2019
- 资助金额:
$ 83.92万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 83.92万 - 项目类别:
Selective Inhibitors of T Cell Activation Target Exportin-1 at Cys528 to Suppress Pathological T Cell Activation
T 细胞激活的选择性抑制剂 Cys528 靶点 Exportin-1 抑制病理性 T 细胞激活
- 批准号:
10659905 - 财政年份:2023
- 资助金额:
$ 83.92万 - 项目类别:
STK25 phosphorylates PRKAR1A to regulate PKA signaling
STK25 磷酸化 PRKAR1A 来调节 PKA 信号传导
- 批准号:
10736399 - 财政年份:2023
- 资助金额:
$ 83.92万 - 项目类别:
Innovative therapeutic strategies to support elimination of river blindness
支持消除河盲症的创新治疗策略
- 批准号:
10754120 - 财政年份:2023
- 资助金额:
$ 83.92万 - 项目类别:
Nucleic Acid-Based Anti-CRISPR Inhibitors of Cas9
基于核酸的 Cas9 抗 CRISPR 抑制剂
- 批准号:
10864412 - 财政年份:2023
- 资助金额:
$ 83.92万 - 项目类别: