Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia

利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式

基本信息

  • 批准号:
    9914128
  • 负责人:
  • 金额:
    $ 64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-15 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Abstract Schizophrenia constitutes a chronic and disabling illness. While patients show high rates of response to treatment after a first-episode of schizophrenia, the long-term course of the illness is typically characterized by frequent re- lapses, persistence of symptoms, and enduring cognitive and functional deficits. Despite the prioritization of relapse prevention as a treatment goal, about four out of five patients experience a relapse within the first five years of treatment. Relapses are known to have serious psychosocial, educational, or vocational implications in young adults—a population at high risk of psychosis. However, current psychiatric ability to recognize indicators of relapse in order to prevent escalation of psychotic symptoms is markedly limited. Challenges stem from a lack of availability of comprehensive information about early warning signs, and reliance on fixed time point sampling of cross-sectional data as well as patient or family reported observations, that is subject to recall bias, or on clin- ician sought information, that needs frequent and timely contact. The present proposal seeks to address these gaps in early psychosis treatment, by leveraging patient-generated and patient-volunteered social media data, and developing and validating machine learning approaches for “digital phenotyping” and relapse prediction. Our proposed work is founded on the observation that social media sites have emerged as prominent platforms of emotional and linguistic expression—young adults are among the heaviest users of social media. The work signif- icantly advances the research agenda and extensive pilot investigations of the team, who a) have demonstrated that social media data of individuals can serve as a powerful “lens” toward understanding and inferring mental health state, illness course, and likelihood of relapse, including among young adults with early psychosis; and b) have been involved in examining the role of emergent technologies, like social media, in improving access to and delivery of psychiatric care. Aim 1 will provide theoretically-grounded and clinically meaningful methods for extracting and modeling digital phenotypes and symptoms from social media data of young adult early psychosis patients. Then in Aim 2, we will develop and evaluate machine learning methods that will utilize the extracted social media digital phenotypes to infer patient-specific personalized risk of relapse, and identify its antecedents. Finally, Aim 3 will develop a two-faceted validation framework, to assess the statistical and clinical efficacy and utility of the social media derived inferences of psychosis and relapse in influencing clinical outcomes and in facilitating evidence-based treatment. To accomplish these aims, the project brings together a strong multidisci- plinary team, combining expertise in social media analytics, psychiatry, psychology, natural language analysis, machine learning, information privacy, and research ethics. Our novel approach offers unprecedented opportuni- ties to initiate the adoption of personalized, responsive, and preemptive evidence-based strategies in treatment of psychosis. The knowledge will set the stage for future research on launching large-scale trials aimed to develop interventions that diminish the severity of relapses, or prevent their occurrence altogether.
抽象的 精神分裂症构成了一种慢性致残的疾病。虽然患者对治疗的反应率很高 在精神分裂症的第一集之后,疾病的长期病程通常以经常重复为特征 失误,症状的持久性以及持久的认知和功能降低。尽管优先考虑 预防复发作为治疗目标,大约有四名患者在第一个五个患者中得到了缓解 多年治疗。众所周知,复发具有严重的社会心理,教育或发布的意义 年轻人 - 患有精神病的高风险人群。但是,当前识别指标的精神病能力 为了防止精神病符号升级而被显着限制。挑战源于缺乏 提供有关预警信号的全面信息以及固定时间点采样的救济 横截面数据以及患者或家庭报告的观察结果,可能会召回偏见,或 ICIAN感知的信息经常需要及时接触。本提案旨在解决这些问题 通过利用患者生成和患者志愿的社交媒体数据来进行早期精神病治疗的差距, 以及开发和验证“数字表型”和浮雕预测的机器学习方法。我们的 拟议的工作是建立在社交媒体网站已成为重要平台的观察基础上的 情感和语言表达 - 年轻的成年人是社交媒体中最重的使用者之一。工作意义重大 - 明显地提高了研究议程和对团队的广泛试点调查,A)已证明 个人的社交媒体数据可以作为理解和推断精神的强大“镜头” 健康状态,疾病课程和退休的可能性,包括早期精神病的年轻人;和 b)参与了研究新兴技术(如社交媒体)在改善访问访问访问方面的作用 和精神病护理的提供。 AIM 1将为理论上且临床上有意义的方法 从年轻成人早期精神病的社交媒体数据中提取和建模数字表型和符号 患者。然后在AIM 2中,我们将开发和评估将利用提取的机器学习方法 社交媒体数字表型,以推断患者特定的个性化继电器风险,并确定其前因。 最后,AIM 3将开发一个两方面的验证框架,以评估统计和临床效率和 社交媒体的实用性在影响临床结果和中的精神病和缓解的推论中 促进基于证据的治疗。为了实现这些目标,该项目汇集了一个强大的多阶段 三级团队,结合社交媒体分析,精神病学,心理学,自然语言分析的专业知识, 机器学习,信息隐私和研究道德。我们的新颖方法提供了前所未有的机会 启动采用个性化,响应式和先发制的基于证据的策略的关系 精神病。知识将为未来的研究奠定舞台,以启动旨在开发的大规模试验 干预措施会减少继电器的严重程度,或完全阻止其发生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Munmun De Choudhury其他文献

Munmun De Choudhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Munmun De Choudhury', 18)}}的其他基金

Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
  • 批准号:
    10369003
  • 财政年份:
    2019
  • 资助金额:
    $ 64万
  • 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
  • 批准号:
    9115639
  • 财政年份:
    2014
  • 资助金额:
    $ 64万
  • 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
  • 批准号:
    8802476
  • 财政年份:
    2014
  • 资助金额:
    $ 64万
  • 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
  • 批准号:
    9319296
  • 财政年份:
    2014
  • 资助金额:
    $ 64万
  • 项目类别:

相似海外基金

Methods Core
方法核心
  • 批准号:
    10575208
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
Alcohol Use and Mental Health as Predictors of Intimate Partner Violence from Adolescence to Young Adulthood
饮酒和心理健康是从青春期到青年期亲密伴侣暴力的预测因素
  • 批准号:
    10749253
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
Adult Progression of Adolescent Onset Substance Use Disorder in a High Risk Sample
高风险样本中青少年发作药物使用障碍的成人进展
  • 批准号:
    10389730
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
Adult Progression of Adolescent Onset Substance Use Disorder in a High Risk Sample
高风险样本中青少年发作药物使用障碍的成人进展
  • 批准号:
    10677547
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
Implementation Research to Optimize ART Delivery for Adolescent Girls and Young Women Living with HIV in Tanzania
优化坦桑尼亚艾滋病毒感染青春期女孩和年轻女性抗逆转录病毒治疗的实施研究
  • 批准号:
    10547999
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了