Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
基本信息
- 批准号:9914128
- 负责人:
- 金额:$ 64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescent and Young AdultAdoptedAdoptionAffectAftercareBehaviorBehavioralBig DataBiometryCaringChronicCircadian RhythmsClinicalClinical DataClinical PsychologyClinical ResearchClinical TrialsCognitionCognitiveComputational TechniqueComputersComputing MethodologiesDataData CollectionDeteriorationDevelopmentDisorientationDoctor of PhilosophyEarly DiagnosisEarly InterventionEmerging TechnologiesEmotionalEvaluationEvidence based treatmentFamilyFeedbackFoundationsGoalsHealthHospitalizationImprove AccessIndividualInterventionInvestigationKnowledgeLeadLearningLinguisticsMachine LearningMental DepressionMental HealthMental disordersMethodsMonitorMoodsNational Institute of Mental HealthOutcomePatient-Focused OutcomesPatientsPhasePhenotypePopulationPrivacyPsychiatric therapeutic procedurePsychiatryPsychologyPsychotic DisordersRelapseReportingResearchResearch EthicsResearch MethodologyRiskRoleSamplingSchizophreniaScientistSeveritiesSiteSocial FunctioningSocial PsychologySourceStigmatizationStrategic PlanningSuicideSurfaceSymptomsTechniquesTestingTexasTheoretical modelTimeUniversitiesValidationViolenceWorkYouthbasebiological researchbiomarker developmentclinical decision supportclinical efficacyclinical heterogeneitycohortcomputational basisdeep learningdigitaldigital mediadigital modelsdisabilitydisease classificationdisorder later incidence preventionevidence baseexperiencefamily burdenfirst episode schizophreniahigh riskimprovedinnovative technologiesintervention programlensmachine learning methodmedical complicationmultidisciplinarynatural languagenovelnovel strategiespeerpersonalized interventionpreventprospectivepsychosocialpsychotic symptomsrecruitrelapse patientsrelapse predictionrelapse riskresponsesocialsocial mediasocial observationsstemsupport toolstreatment optimizationtreatment responsetreatment strategyvolunteerwillingnessyoung adult
项目摘要
Abstract
Schizophrenia constitutes a chronic and disabling illness. While patients show high rates of response to treatment
after a first-episode of schizophrenia, the long-term course of the illness is typically characterized by frequent re-
lapses, persistence of symptoms, and enduring cognitive and functional deficits. Despite the prioritization of
relapse prevention as a treatment goal, about four out of five patients experience a relapse within the first five
years of treatment. Relapses are known to have serious psychosocial, educational, or vocational implications in
young adults—a population at high risk of psychosis. However, current psychiatric ability to recognize indicators
of relapse in order to prevent escalation of psychotic symptoms is markedly limited. Challenges stem from a lack
of availability of comprehensive information about early warning signs, and reliance on fixed time point sampling
of cross-sectional data as well as patient or family reported observations, that is subject to recall bias, or on clin-
ician sought information, that needs frequent and timely contact. The present proposal seeks to address these
gaps in early psychosis treatment, by leveraging patient-generated and patient-volunteered social media data,
and developing and validating machine learning approaches for “digital phenotyping” and relapse prediction. Our
proposed work is founded on the observation that social media sites have emerged as prominent platforms of
emotional and linguistic expression—young adults are among the heaviest users of social media. The work signif-
icantly advances the research agenda and extensive pilot investigations of the team, who a) have demonstrated
that social media data of individuals can serve as a powerful “lens” toward understanding and inferring mental
health state, illness course, and likelihood of relapse, including among young adults with early psychosis; and
b) have been involved in examining the role of emergent technologies, like social media, in improving access to
and delivery of psychiatric care. Aim 1 will provide theoretically-grounded and clinically meaningful methods for
extracting and modeling digital phenotypes and symptoms from social media data of young adult early psychosis
patients. Then in Aim 2, we will develop and evaluate machine learning methods that will utilize the extracted
social media digital phenotypes to infer patient-specific personalized risk of relapse, and identify its antecedents.
Finally, Aim 3 will develop a two-faceted validation framework, to assess the statistical and clinical efficacy and
utility of the social media derived inferences of psychosis and relapse in influencing clinical outcomes and in
facilitating evidence-based treatment. To accomplish these aims, the project brings together a strong multidisci-
plinary team, combining expertise in social media analytics, psychiatry, psychology, natural language analysis,
machine learning, information privacy, and research ethics. Our novel approach offers unprecedented opportuni-
ties to initiate the adoption of personalized, responsive, and preemptive evidence-based strategies in treatment of
psychosis. The knowledge will set the stage for future research on launching large-scale trials aimed to develop
interventions that diminish the severity of relapses, or prevent their occurrence altogether.
抽象的
精神分裂症是一种慢性致残性疾病,而患者对治疗的反应率很高。
精神分裂症首次发作后,该病的长期病程通常以频繁复发为特征。
尽管优先考虑了失误、症状持续存在以及持久的认知和功能缺陷。
将预防复发作为治疗目标,大约五分之四的患者在前五年内会出现复发
众所周知,多年的治疗复发会对心理、教育或职业产生严重影响。
年轻人——精神病高危人群。然而,目前精神病学识别指标的能力。
为防止精神病症状升级而采取的措施明显有限。挑战源于缺乏。
有关预警信号的综合信息的可用性以及对固定时间点采样的依赖
横截面数据以及患者或家属报告的观察结果,这些数据可能存在回忆偏差,或与临床有关
ician 寻求需要经常和及时联系的信息,本提案旨在解决这些问题。
通过利用患者生成和患者自愿的社交媒体数据来弥补早期精神病治疗的差距,
开发和验证“数字表型”和复发预测的机器学习方法。
拟议的工作是基于以下观察:社交媒体网站已成为重要的平台
情感和语言表达——年轻人是社交媒体最频繁的用户之一。
巧妙地推进了研究议程和团队的广泛试点调查,他们a)已经证明
个人的社交媒体数据可以作为理解和推断心理的强大“镜头”
健康状况、病程和复发的可能性,包括患有早期精神病的年轻人;以及
b) 参与研究社交媒体等新兴技术在改善获取信息的机会方面的作用
目标 1 将为患者提供有理论依据和临床意义的方法。
从年轻人早期精神病的社交媒体数据中提取和建模数字表型和症状
然后在目标 2 中,我们将开发和评估利用提取的机器学习方法。
社交媒体数字表型来推断患者特定的个性化复发风险,并确定其前因。
最后,Aim 3将开发一个双向验证框架,以评估统计和临床效率以及
社交媒体对精神病和复发的推论在影响临床结果和
为了促进循证治疗,该项目汇集了强大的多学科团队。
核心团队,结合了社交媒体分析、精神病学、心理学、自然语言分析、
我们的新颖方法提供了前所未有的机会。
联系以启动采用个性化、响应性和先发性的循证策略来治疗
这些知识将为未来开展旨在开发精神病的大规模试验奠定基础。
可以减轻复发严重程度或完全预防复发的干扰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munmun De Choudhury其他文献
Munmun De Choudhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Munmun De Choudhury', 18)}}的其他基金
Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
- 批准号:
10369003 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9115639 - 财政年份:2014
- 资助金额:
$ 64万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
8802476 - 财政年份:2014
- 资助金额:
$ 64万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9319296 - 财政年份:2014
- 资助金额:
$ 64万 - 项目类别:
相似海外基金
Alcohol Use and Mental Health as Predictors of Intimate Partner Violence from Adolescence to Young Adulthood
饮酒和心理健康是从青春期到青年期亲密伴侣暴力的预测因素
- 批准号:
10749253 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Adult Progression of Adolescent Onset Substance Use Disorder in a High Risk Sample
高风险样本中青少年发作药物使用障碍的成人进展
- 批准号:
10389730 - 财政年份:2022
- 资助金额:
$ 64万 - 项目类别:
Adult Progression of Adolescent Onset Substance Use Disorder in a High Risk Sample
高风险样本中青少年发作药物使用障碍的成人进展
- 批准号:
10677547 - 财政年份:2022
- 资助金额:
$ 64万 - 项目类别:
Implementation Research to Optimize ART Delivery for Adolescent Girls and Young Women Living with HIV in Tanzania
优化坦桑尼亚艾滋病毒感染青春期女孩和年轻女性抗逆转录病毒治疗的实施研究
- 批准号:
10547999 - 财政年份:2022
- 资助金额:
$ 64万 - 项目类别: