Mechanism and Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母DNA重组机制及调控
基本信息
- 批准号:9912782
- 负责人:
- 金额:$ 30.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAutomobile DrivingAwardBacteriaBiochemicalBiological AssayCell Cycle RegulationCellsChemicalsChromosomal BreaksChromosomesDNA Double Strand BreakDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA biosynthesisDNA replication forkDiseaseDouble Strand Break RepairEukaryotaEventEvolutionFLP recombinaseFoundationsFutureGeneticGenetic RecombinationGenomeGenomic InstabilityGenomicsGoalsGrantHealthHumanInvestigationLocationMaintenanceMalignant NeoplasmsMediatingMeiosisMethodsMinorMitoticMolecularNatureOkazaki fragmentsPathway interactionsPlayProcessProteinsRegulationReplication OriginReplication-Associated ProcessResearchRoleRunningS PhaseSPO11 geneSaccharomyces cerevisiaeSiteStructureTestingWorkYeast Model Systemcancer therapychromatin immunoprecipitationcohesinendodeoxyribonuclease SceIendonucleaseexperimental studygenetic informationhelicasehomologous recombinationhuman diseaseinsightirradiationnucleasepreventrecombinational repairrecruitrepairedstemtool
项目摘要
Homologous recombination (HR) plays an essential role in maintaining stability of genetic information, and
even a minor deficiency in HR leads to severe diseases including cancer. Recombination repairs DNA double-
strand breaks (DSBs) that occur spontaneously, or are induced by chemicals or irradiation such as used in
cancer therapy. Nearly all we know about recombination processes comes from studies of two-ended double
strand breaks (DSBs) induced by endonucleases (e.g. I-SceI, HO). However, it is well established that
spontaneous chromosomal breaks are predominantly single-ended DSBs (seDSBs), as they arise during DNA
replication when a replication fork runs into a nick. In bacteria that contain a single replication origin per
genome, broken forks are repaired by Pri proteins capable of reloading the replisome at any genomic location.
However, Pri proteins are not conserved, and the mechanism of broken fork repair in eukaryotes remains
undefined. Our long-term goal is to understand the molecular mechanisms and regulation of DSB repair
including broken replication fork repair, and to understand how deficiencies in these processes affect genomic
instability. The objective of this project is to define the mechanistic features of Broken Fork Repair (BFR),
which is the most common, yet poorly understood, type of DSB repair. We propose that eukaryotes repair
broken replication forks using a combination of the structure-specific nuclease Mus81/Mms4 and a converging
fork initiated at the next active or damage-activated origin. We further propose that this mechanism restricts the
usage of highly mutagenic DNA synthesis via the well-characterized Break Induced Replication (BIR) process.
The central question is whether eukaryotes are able to reestablish replication forks at the site of fork breakage
as demonstrated in bacteria. What are the genetic requirements for broken fork repair and how do they differ
from mutagenic BIR? What is the fate of replisome proteins at broken forks? These questions will be
addressed in the yeast model organism Saccharomyces cerevisiae, where all replication origins are annotated
and Flp recombinase-induced broken fork assays are available. We will define whether functional forks can be
reestablished and whether dormant origins are activated in the vicinity of the broken fork using the hydrolytic
end sequencing (HydEn-seq) method. The stability of the replisome after fork breakage will be studied using
chromatin immunoprecipitation. We will also study the role and regulation of structure-specific nucleases in the
repair of broken forks. The most common types of genomic rearrangements that occur during BFR and BIR
stem from template switches and half crossovers. We will identify the genetic requirements for these events. At
the conclusion of this project we expect to: (i) provide new molecular tools to study BFR, (ii) delineate the
major mechanism of BFR, and (iii) uncover mechanisms that prevent mutagenic BIR, which is believed to
account for a significant fraction of genomic rearrangements associated with human disease. Our work strives
to define conserved pathways for the maintenance of chromosome integrity and has strong relevance to
human health.
同源重组(HR)在维持遗传信息的稳定性和
即使是人力资源的少量缺乏也会导致包括癌症在内的严重疾病。重组维修DNA双重
自发发生或通过化学物质或辐射引起的链断裂(DSB)
癌症治疗。我们对重组过程的了解几乎来自对两端双重的研究
核酸内切酶诱导的链断裂(DSB)(例如I-SCEI,HO)。但是,已经确定了
自发性染色体断裂主要是单端DSB(SEDSB),因为它们在DNA期间出现
复制叉会陷入划痕时复制。在包含单个复制起源的细菌中
基因组,断裂的叉子通过能够在任何基因组位置重新加载重新加载的PRI蛋白来修复。
但是,PRI蛋白不是保守的,而真核生物中叉骨修复的机制仍然存在
不明确的。我们的长期目标是了解DSB修复的分子机制和调节
包括破裂的复制叉修复,并了解这些过程中的缺陷如何影响基因组
不稳定。该项目的目的是定义破碎的叉修理(BFR)的机械特征,
这是DSB修复的最常见,但知之甚少的类型。我们建议真核生物修复
使用结构特异性核酸酶MUS81/MMS和收敛的结合使用折断复制叉
在下一个活动或损坏激活的起源处启动的叉子。我们进一步提出,这种机制限制了
通过特征良好的断裂诱导复制(BIR)过程来使用高度诱变的DNA合成。
中心问题是真核生物是否能够重新建立叉子破裂现场的复制叉
如细菌所示。破碎的叉子维修的遗传要求是什么?它们有何不同
来自诱变BIR?破碎的叉子在破碎的蛋白质上的命运是什么?这些问题将是
在酵母模型生物糖酿酒酵母中的解决,所有复制起源都是注释的
和FLP重组酶诱导的破叉测定法。我们将定义功能叉是否可以
重建以及是否使用水解的叉子附近激活休眠的起源
结束测序(Hyden-Seq)方法。将使用叉子断裂后重新分散体的稳定性研究
染色质免疫沉淀。我们还将研究结构特异性核酸酶的作用和调节
修理破碎的叉子。 BFR和BIR期间发生的最常见的基因组重排类型
茎来自模板开关和半跨界。我们将确定这些事件的遗传要求。在
我们期望该项目的结论:(i)提供研究BFR的新分子工具,(ii)描述
BFR的主要机制和(iii)揭示了预防诱变BIR的机制,据信这是
占与人类疾病相关的基因组重排的很大一部分。我们的工作努力
定义维持染色体完整性的保守途径,并与
人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grzegorz A Ira其他文献
Grzegorz A Ira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grzegorz A Ira', 18)}}的其他基金
Regulation of Initial Steps of Chromosomal Breaks Repair
染色体断裂修复初始步骤的调控
- 批准号:
10364268 - 财政年份:2018
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of Initial Steps of Chromosomal Breaks Repair
染色体断裂修复初始步骤的调控
- 批准号:
10611707 - 财政年份:2018
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of Initial Steps of Chromosomal Breaks Repair
染色体断裂修复初始步骤的调控
- 批准号:
10554415 - 财政年份:2018
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母 DNA 重组的调控
- 批准号:
7896066 - 财政年份:2009
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母 DNA 重组的调控
- 批准号:
7809626 - 财政年份:2007
- 资助金额:
$ 30.65万 - 项目类别:
MECHANISM AND REGULATION OF DNA RECOMBINATION IN SACCHAROMYCES CEREVISIAE
酿酒酵母DNA重组的机制和调控
- 批准号:
10209684 - 财政年份:2007
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母 DNA 重组的调控
- 批准号:
7245956 - 财政年份:2007
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母 DNA 重组的调控
- 批准号:
7413253 - 财政年份:2007
- 资助金额:
$ 30.65万 - 项目类别:
Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母 DNA 重组的调控
- 批准号:
8667465 - 财政年份:2007
- 资助金额:
$ 30.65万 - 项目类别:
Mechanism and Regulation of DNA recombination in Saccharomyces cerevisiae
酿酒酵母DNA重组机制及调控
- 批准号:
9236365 - 财政年份:2007
- 资助金额:
$ 30.65万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 30.65万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 30.65万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 30.65万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 30.65万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 30.65万 - 项目类别: