Isochoric Pressure Based Preservation of Cells, Tissues and Organs
基于等容压的细胞、组织和器官保存
基本信息
- 批准号:9910362
- 负责人:
- 金额:$ 87.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAllograftingAmputationAnimal ModelAnimal OrganAnimalsAreaBasic ScienceBehavioralBiocompatible MaterialsBiologicalBiological PreservationBiomechanicsBiomedical ResearchBlood Vessel TissueBlood VesselsCaenorhabditis elegansCartilageCell SurvivalCell TherapyCellsCessation of lifeCharacteristicsChronicClinicalClinical ProtocolsCommunitiesCryopreservationCytoprotectionDataDevelopmentDevicesDigit structureDiseaseEmergency SituationEndotheliumEnsureEquilibriumEvaluationFertility AgentsFingersFishesFoodForelimbFunding AgencyGoalsGovernmentGraft RejectionHandHeartHourHumanIceIn VitroLettersLimb structureMeasuresMedical ResearchMetabolicMetabolismMethodsModelingMuscleOrganOrgan DonorOrgan PreservationOrgan TransplantationOrganismOvaryPatientsPerfusionPhasePhysical FunctionProcessProtocols documentationQuality of lifeRattusReadinessRecoveryRecovery of FunctionRegenerative MedicineResearchResearch PersonnelRewarmingSkinSkin TissueSolidStructural ModelsSystemTemperatureTestingTestisThermodynamicsTissue EngineeringTissue GraftsTissue TransplantationTissue ViabilityTissuesToxic effectTranslationsTransplant RecipientsTransplantationTraumaTraumatic injuryUniversity of Wisconsin-lactobionate solutionUpper ExtremityValidationWorkanimationbasebiomaterial compatibilitycell injurycell typeclinical practiceclinically relevantcommercializationcryobiologycryogenicsdesigndrug discoveryfunctional outcomeshigh throughput screeninghuman modelimprovedischemic injurylimb transplantationnovelnovel strategiesoncofertilityphase 2 studypreclinical studypreconditioningpreservationpressureprototypereproductive organscale upsensorstemstress tolerancesuccesstissue/organ preservationtransplant modeltrauma care
项目摘要
PROJECT SUMMARY/ ABSTRACT
There is wide recognition within the transplant and broader biomedical communities, as well as government
funding agencies, that extended and improved preservation of biological materials is needed for a huge range of
endeavors in biomedicine, medical research and drug discovery, organ and tissue transplantation, cell-based
therapies, fertility and regenerative medicine, emergency preparedness, and trauma care. The current standard of
preservation for organs and vascular composite allografts (VCAs) consists of few hours of hypothermic static
storage in UW solution on ice. This contributes to organ/VCA shortage and increased discard rates, exacerbates
ischemic injury and graft rejection due to suboptimal donor-recipient matching, and diminishes the quality of life
for transplant recipients. To address these challenges, we have pioneered a novel thermodynamic
approach to biopreservation, based on a stable equilibrium state and isochoric (constant volume)
condition, at high subzero (-5°C to -20 °C) temperatures, that will allow effective preservation of organs
and VCAs, with a 20x-28x increase in storage duration over the current clinical practice (<6-12h of hypothermic
storage) while avoiding cellular injury and other challenges created by storage at deep cryogenic temperatures.
Importantly, we will build on the successful demonstration of feasibility in Phase I and the results that Sylvatica
and UC Berkeley have collaboratively demonstrated with regard to high subzero isochoric preservation: (1)
biocompatible thermodynamic pressure profiles for preservation cocktails that support human cell survival in isochoric
systems with viabilities above 75%, (2) successful initial scale-up of isochoric preservation to whole rat hearts and skin
at unprecedented temperatures (-8°C, -10°C), and (3) isochoric preservation of fish muscle and an entire organism (the
research model C. elegans). Therefore, the objective of this Phase II proposal is to demonstrate, using animal and
human models of VCA representative tissues and limb preservation, prolonged cryopreservation of VCAs for
5-7 days and weeks, or longer, with good functional outcome post storage and recovery. Across five specific aims,
we will first employ skin and vascular models of VCAs for cryostasis cocktail and protocol optimization, with the central
goal of enabling high subzero isochoric preservation while actively suppressing metabolism and enhancing
stress tolerance. An isochoric preservation platform (chamber, pressure/temperature sensors) based on the
successful system used in Phase I will be designed and built to support cryostasis protocols validation using
clinical size human skin and blood vessels, then a model of rat forelimb preservation and assessment through
pseudo transplantation, and then by orthotopic allotransplantation with comprehensive characterization of upper
extremity functional and behavioral recovery. The results from the animal preservation/transplantation model will
be used for the proof-of-concept for high subzero isochoric preservation of human fingers and hands,
with full exsanguinous metabolic support quality assessment.
项目概要/摘要
在移植界和更广泛的生物医学界以及政府中得到了广泛的认可
资助机构认为,大量生物材料的保存需要延长和改进
致力于生物医学、医学研究和药物发现、器官和组织移植、细胞基础
治疗、生育和再生医学、应急准备和创伤护理的现行标准。
器官和血管复合同种异体移植物 (VCA) 的保存包括几个小时的低温静态
储存在冰上的 UW 溶液中这会导致器官/VCA 短缺并增加丢弃率,从而加剧这种情况。
由于供体-受体匹配不佳而导致缺血性损伤和移植物排斥,并降低生活质量
为了应对移植受者的这些挑战,我们开创了一种新颖的热力学。
基于稳定平衡状态和等容(恒定体积)的生物保存方法
在零度以下(-5°C 至 -20°C)的高温条件下,可以有效保存器官
和 VCA,与当前临床实践相比,存储时间延长了 20 倍至 28 倍(<6-12 小时的低温
储存),同时避免细胞损伤和深低温储存带来的其他挑战。
重要的是,我们将在第一阶段成功论证可行性以及 Sylvatica 的结果的基础上
和加州大学伯克利分校合作证明了零下高度等容保存:(1)
用于支持人体细胞等容生存的保存鸡尾酒的生物相容性热力学压力曲线
系统活力高于 75%,(2) 成功地将等容保存初步扩大到整个大鼠心脏和皮肤
在前所未有的温度(-8°C、-10°C)下,以及(3)鱼肌肉和整个生物体的等容保存(
研究模型线虫)因此,第二阶段提案的目标是使用动物和模型进行演示。
VCA 人体模型的代表性组织和肢体保存,VCA 的长期冷冻保存
5-7 天和几周或更长时间,在存储和恢复后具有良好的功能结果,涵盖五个具体目标,
我们将首先采用 VCA 的皮肤和血管模型进行冷冻鸡尾酒和方案优化,其中中央
实现高零度以下等容保存的目标,同时积极抑制新陈代谢并增强
基于压力耐受性的等容保存平台(腔室、压力/温度传感器)
第一阶段使用的成功系统将被设计和构建,以支持使用以下方法进行低温冷冻协议验证:
临床尺寸的人体皮肤和血管,然后通过以下方法建立大鼠前肢保存和评估模型
假移植,然后通过具有上颌综合特征的原位同种异体移植
动物保存/移植模型的结果将导致肢体功能和行为恢复。
用于人类手指和手的高度零度以下等容保存的概念验证,
进行全面的无血代谢支持质量评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerald Brandacher其他文献
Gerald Brandacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerald Brandacher', 18)}}的其他基金
Greatly Extended Subzero Ischemic Storage of Renal Allografts Using Novel Bio-inspired Next Generation Cryoprotectants
使用新型仿生下一代冷冻保护剂大大延长肾同种异体移植物的零度以下缺血储存
- 批准号:
10761617 - 财政年份:2023
- 资助金额:
$ 87.41万 - 项目类别:
New approaches to kidney banking through nature-inspired high sub-zero preservation strategies
通过受自然启发的高零度保存策略实现肾银行新方法
- 批准号:
10823132 - 财政年份:2019
- 资助金额:
$ 87.41万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 87.41万 - 项目类别:
Develop manganese-containing porous scaffolds with vasculature-like channels for potential applications in craniofacial bone regeneration
开发具有类血管通道的含锰多孔支架,在颅面骨再生中具有潜在应用
- 批准号:
10514798 - 财政年份:2022
- 资助金额:
$ 87.41万 - 项目类别: