Regulatory mechanisms of protein and RNA phase transitions
蛋白质和RNA相变的调控机制
基本信息
- 批准号:9910707
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-06 至 2023-01-05
- 项目状态:已结题
- 来源:
- 关键词:Amyotrophic Lateral SclerosisBehaviorBindingBiophysical ProcessCell CycleCell PolarityCell membraneCell physiologyCellsClinicalComplexDataDiffuseDiffusionDiseaseEndoplasmic ReticulumGrowthHumanIn VitroKnowledgeLeadLifeLiquid substanceMembraneMissionMolecularMolecular ChaperonesNeurodegenerative DisordersNuclearOrganellesOutcomeOutcomes ResearchPathologicPathologyPatternPhasePhase TransitionPhysiologicalPhysiologyPlayProcessPropertyProteinsPublic HealthQuantitative MicroscopyRNARNA-Binding ProteinsReportingResearchRoleScienceStructureSurfaceTestingTimeTranscriptUnited States National Institutes of HealthWorkbasebiophysical propertiesbiophysical toolscell growthdisabilityexperimental studyfungusinnovationlive cell imaginglive cell microscopynovel strategiesoverexpressionreconstitutionrecruitscreeningtwo-dimensional
项目摘要
Project Summary. Compartmentalization of molecules into distinct volumes is essential for cellular life.
Biomolecular condensates, composed of liquid-like, phase-separated protein and RNA, are important centers
of compartmentalization in diverse contexts. Phase-separated structures also play central roles in pathological
aggregates that cause disease. Despite the critical importance of phase separation in physiology and
pathology, the regulatory mechanisms that govern when and where condensates form in cells are unknown.
Our group discovered that biomolecular phase transitions play essential physiological roles in a multinucleate
fungus (Zhang et al., Molecular Cell 2015; Langdon et al., Science 2018). Specifically, the RNA-binding protein
Whi3 forms distinct, functional droplets with different RNA transcripts that regulate either the nuclear cycle or
cell polarity. How do cells control assembly and patterning of different droplets in space and time? Recent
reports demonstrated that membrane surfaces provide a powerful platform for promoting protein phase
separation (Case et al., Science 2019; Huang et al., Science 2019). However, no studies have examined the
role of membranes in controlling RNA-based phase transitions. In my preliminary studies, I found that Whi3
droplets stably associate with endomembranes in live cells. Moreover, I found that membranes promote phase
separation of Whi3 in vitro at substantially lower concentration compared to free-diffusing protein in solution.
These findings suggest that endomembrane surfaces regulate Whi3/RNA phase separation in space and time.
Intriguingly, I also found that Whi3 partitions strongly to interfaces between contacting membranes, suggesting
that regions of membrane contact between organelles or with the plasma membrane may regulate Whi3/RNA
phase separation. How is Whi3 recruited to endomembranes? My preliminary findings reveal that an
endomembrane-associated molecular chaperone component binds to Whi3 and tunes droplet properties.
Importantly, molecular chaperones are known to influence droplet behavior, potentially defining the emergent
identities and functions of droplets. Taken together, my findings suggest that (i) endomembranes promote and
regulate protein/RNA phase transitions and (ii) membrane-associated chaperones control droplet properties to
determine overall function. The objective of my proposed work is to elucidate the role of membranes and
associated chaperones in regulating and patterning phase separation in space and time. The first specific aim
will examine how membrane surfaces and interfaces control assembly of biomolecular condensates. The
second specific aim will evaluate how membrane-associated chaperones regulate the emergent properties and
functions of biomolecular condensates. This work will create innovative biophysical tools for the study of
protein/RNA phase transitions in vitro and in live cells. The overall outcome of this research will be a deeper
understanding of the key regulatory platforms that control phase separation. As such, my work will help reveal
how cells build and maintain the fundamental compartments that control growth and division.
项目摘要。将分子划分成不同的体积对于细胞生命至关重要。
由液体状、相分离的蛋白质和RNA组成的生物分子凝聚体是重要的中心
不同背景下的区隔化。相分离结构在病理学中也发挥着核心作用
导致疾病的聚集体。尽管相分离在生理学和
病理学上,控制细胞中凝结物何时何地形成的调节机制尚不清楚。
我们的小组发现生物分子相变在多核细胞中发挥着重要的生理作用
真菌(Zhang 等人,Molecular Cell 2015;Langdon 等人,Science 2018)。具体而言,RNA结合蛋白
Whi3 与不同的 RNA 转录物形成独特的功能性液滴,调节核循环或
细胞极性。细胞如何控制不同液滴在空间和时间上的组装和图案化?最近的
报告表明,膜表面为促进蛋白质相提供了强大的平台
分离(Case 等人,Science 2019;Huang 等人,Science 2019)。然而,没有研究检验过
膜在控制基于 RNA 的相变中的作用。在我的初步研究中,我发现Whi3
液滴与活细胞的内膜稳定结合。此外,我发现膜促进相
与溶液中自由扩散的蛋白质相比,Whi3 的体外分离浓度显着降低。
这些发现表明内膜表面调节 Whi3/RNA 在空间和时间上的相分离。
有趣的是,我还发现 Whi3 对接触膜之间的界面有强烈的分配作用,这表明
细胞器之间或与质膜的膜接触区域可能调节 Whi3/RNA
相分离。 Whi3 是如何招募到内膜上的?我的初步调查结果表明
内膜相关分子伴侣成分与 Whi3 结合并调节液滴特性。
重要的是,已知分子伴侣会影响液滴行为,可能定义新兴的液滴行为。
液滴的特性和功能。综上所述,我的研究结果表明(i)内膜促进和
调节蛋白质/RNA 相变和 (ii) 膜相关分子伴侣控制液滴特性
确定总体功能。我提出的工作的目的是阐明膜的作用和
相关伴侣在空间和时间上调节和图案化相分离。第一个具体目标
将研究膜表面和界面如何控制生物分子凝聚物的组装。这
第二个具体目标将评估膜相关伴侣如何调节新兴特性和
生物分子凝聚体的功能。这项工作将为研究创造创新的生物物理工具
体外和活细胞中的蛋白质/RNA 相变。这项研究的总体成果将更加深入
了解控制相分离的关键监管平台。因此,我的工作将有助于揭示
细胞如何构建和维持控制生长和分裂的基本区室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilton Thomas Snead其他文献
Wilton Thomas Snead的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilton Thomas Snead', 18)}}的其他基金
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
- 批准号:
10639551 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Regulatory mechanisms of protein and RNA phase transitions
蛋白质和RNA相变的调控机制
- 批准号:
10319595 - 财政年份:2020
- 资助金额:
$ 6.49万 - 项目类别:
Elucidating the physical mechanisms of membrane fission
阐明膜裂变的物理机制
- 批准号:
9192596 - 财政年份:2016
- 资助金额:
$ 6.49万 - 项目类别:
相似国自然基金
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
- 批准号:62366028
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
Egr2调控早期社会隔离小鼠再社会化后合作行为及其分子机制研究
- 批准号:82304466
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于单侧J-积分的FRP-混凝土界面疲劳裂纹扩展行为表征
- 批准号:12302240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Physiological Function of Persistent Inward Currents in Motor Neurons
运动神经元持续内向电流的生理功能
- 批准号:
10663030 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Mechanisms of Neurodegeneration in KIF5A ALS/FTD
KIF5A ALS/FTD 神经退行性变的机制
- 批准号:
10740732 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Cryo-EM Analysis of Ribosomal Defects in C9ORF72-Associated Frontotemporal Dementia and ALS
C9ORF72 相关额颞叶痴呆和 ALS 核糖体缺陷的冷冻电镜分析
- 批准号:
10752450 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别: