Architecture and Dynamics of a Gene Regulatory Network Controlling Cell Fate
控制细胞命运的基因调控网络的结构和动力学
基本信息
- 批准号:9908461
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:ArabidopsisArchitectureCell Differentiation processCell Fate ControlCell MaintenanceCell MaturationCell ProliferationCellsComplexCoupledData AnalysesDevelopmentDevelopmental ProcessEctopic ExpressionEmbryonic DevelopmentEndoderm CellEnvironmentEpithelialEpitheliumEventExpression ProfilingFoundationsFutureGene ExpressionGene Expression ProfilingGenesGeneticGenetic ScreeningGenetic TranscriptionGoalsImageImaging TechniquesIndividualKnowledgeLeadLightingLogicMapsMentorsMethodologyMicroscopyModelingMolecularOrganOrganismOverlapping GenesPathway interactionsPatternPeptidesPlant RootsPlayProcessProteinsRegulationRegulator GenesReporterResearchResolutionResourcesRoleSignal TransductionSignaling MoleculeStructureStudy modelsSystemTechnologyTestingTimeTimeLineTissuesTrainingTranscriptional RegulationUniversitiesWorkZebrafishcancer cellcell typecollaborative environmentdesigndifferential expressionexperimental studyforward geneticsgenetic approachinsightmathematical modelmolecular dynamicsmultidimensional datamutantnon-Nativenovelorgan regenerationpluripotencyprogramsprotein expressionsingle-cell RNA sequencingstem cell differentiationstem cell nichestem cell proliferationstem cellstissue regenerationtranscription factor
项目摘要
Project Summary
Cell fate acquisition is a fundamental developmental process in all multicellular organisms and a growing body
of evidence indicates that gene regulatory networks (GRNs) play an important role. However, the molecular
regulation of the entire pathway from stem cell to differentiation has never been defined for any tissue. The
Arabidopsis root, with its simple structure and defined stem cell niche, is a tractable model for studying the
transcriptional regulation of cell fate. Over two decades of work have outlined the GRN that orchestrates cell
proliferation and specification of the endodermis, a tissue analogous to the mammalian epithelium. This GRN is
mapped in sufficient detail to now mathematically model its dynamics. However, crucial questions remain
regarding downstream differentiation events. These include what regulators control endodermal fate stabilization
and differentiation? And how closely are such regulators connected to the transcriptional events controlling stem
cell proliferation? Until recently, technological constraints made it very difficult to study the molecular dynamics
underlying development of a single cell type in the context of an entire organ or organism. The research proposed
here utilizes new advances in imaging and transcriptional profiling to study protein and gene expression
dynamics at cellular resolution. The overall goal of this proposal is to expand the topology of the endodermal
GRN and begin to quantify the dynamics underlying differentiation. To achieve this goal, the proposed specific
aims include conducting a forward genetic screen in a sensitized genetic background to uncover novel regulators
of endodermal identity (Aim 1). In parallel, single cell RNA-sequencing experiments will define gene cascades
underlying cell maturation events, thus providing systems-level insight into regulation of the entire pathway from
stem cell to differentiated endodermis (Aim 2). To experimentally quantify the dynamics of known and novel
regulators in the context of differentiation, state-of-the-art imaging techniques will be employed to track changes
in protein accumulation over time at a cellular resolution in living roots (Aim 3). Together, these aims should
expand the architecture of the endodermal GRN and begin to define how information flows through it to
orchestrate cell differentiation events. The intellectually stimulating and collaborative environment of Duke
University, coupled with individualized mentoring and enabling technology in the sponsoring lab, provide a
resource-rich environment in which to conduct the proposed experiments. This research plan will facilitate
advanced training in genetics, systems-level transcriptional regulation, multi-dimensional data analysis, and
time-lapse microscopy, thereby providing the foundation for a long-term research program to dissect and model
the GRNs underlying fundamental developmental processes. Insights gained from this work will deepen our
mechanistic understanding of how stem cell progeny traverse the pathway to differentiation, thereby producing
methodological and conceptual advances to inform tissue regeneration.
项目概要
细胞命运获得是所有多细胞生物和生长体的基本发育过程
大量证据表明基因调控网络(GRN)发挥着重要作用。然而,分子
对于任何组织,从干细胞到分化的整个途径的调节从未被定义。这
拟南芥根结构简单,干细胞生态位明确,是研究植物根系的易处理模型。
细胞命运的转录调控。二十多年的工作已经概述了协调细胞的 GRN
内皮层(类似于哺乳动物上皮的组织)的增殖和规范。这个GRN是
绘制得足够详细,现在可以对其动态进行数学建模。然而,关键问题仍然存在
关于下游分化事件。其中包括控制内胚层命运稳定的调节因子
和差异化?这些调节因子与控制茎的转录事件的联系有多紧密
细胞增殖?直到最近,技术限制使得研究分子动力学变得非常困难
单个细胞类型在整个器官或生物体中的潜在发育。研究提出
这里利用成像和转录分析的新进展来研究蛋白质和基因表达
细胞分辨率的动力学。该提案的总体目标是扩展内胚层的拓扑结构
GRN 并开始量化差异化背后的动态。为实现这一目标,建议具体
目标包括在敏感的遗传背景下进行正向遗传筛选,以发现新的调节因子
内胚层特性(目标 1)。与此同时,单细胞 RNA 测序实验将定义基因级联
潜在的细胞成熟事件,从而提供对整个途径的调节的系统级洞察
干细胞分化为内皮层(目标 2)。通过实验量化已知和新颖的动态
在差异化背景下,监管机构将采用最先进的成像技术来跟踪变化
活根中蛋白质随着时间的推移以细胞分辨率积累(目标 3)。这些目标应该共同实现
扩展内胚层 GRN 的架构并开始定义信息如何流经它
协调细胞分化事件。杜克大学的智力刺激和协作环境
大学加上赞助实验室的个性化指导和支持技术,提供了
资源丰富的环境可以进行所提出的实验。该研究计划将有助于
遗传学、系统级转录调控、多维数据分析等方面的高级培训
延时显微镜,从而为长期研究计划的解剖和建模提供基础
GRNs 是基本发育过程的基础。从这项工作中获得的见解将加深我们的
对干细胞后代如何穿越分化途径的机制理解,从而产生
为组织再生提供信息的方法和概念进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Maczis Shahan其他文献
Rachel Maczis Shahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
- 批准号:
10723212 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Formation of a functional tendon enthesis during development and healing
在发育和愈合过程中形成功能性肌腱附着点
- 批准号:
10587399 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Genome organizer SATB1 function in salivary gland and development and growth
基因组组织者 SATB1 在唾液腺及其发育和生长中的功能
- 批准号:
10593721 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Integrated frameworks for single-cell epigenomics based transcriptional regulatory networks
基于单细胞表观基因组学的转录调控网络的集成框架
- 批准号:
10713209 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别: