Dynamic Prediction Modeling to Improve Clinical Predictions
动态预测建模改善临床预测
基本信息
- 批准号:9904186
- 负责人:
- 金额:$ 60.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-15 至 2020-12-21
- 项目状态:已结题
- 来源:
- 关键词:Applied ResearchCardiac Surgery proceduresCaringCharacteristicsClinicalClinical ResearchClinical TrialsComplexCritical IllnessDataDiseaseEnsureFailureFutureGoalsGuidelinesHeterogeneityHospitalsIndividualIntensive Care UnitsLungLung TransplantationMedicalMethodologyMethodsModelingOperative Surgical ProceduresOutcomePatient CarePatient-Focused OutcomesPatientsPerformancePopulationPopulation HeterogeneityPreventive InterventionProbabilityProcessProviderPublic HealthPublic Health PracticeQuality of CareResearchResearch PersonnelResourcesRiskRisk AssessmentRisk FactorsSigns and SymptomsSpecific qualifier valueTechnologyTestingTimeTransplantationUnited Network for Organ SharingUpdateValidationWorkaortic valve replacementbaseclinical practicecohortdisorder riskdiverse dataimprovedmortalitypatient populationpatient stratificationpersonalized carepost-transplantpredictive modelingprospective testresponserisk prediction modelside effectsimulation
项目摘要
Project Summary
Risk prediction is inherent to all clinical practice and public health and has been a topic of scientific research for
decades. Formal prediction models are frequently used to enhance clinicians' and researchers' ability to quantify
and communicate risk. However, a prediction model is only useful if it is accurate when applied outside of the
population within which it was developed. Unfortunately, many prediction models in use today prove inaccurate
when applied over time and to new populations, yielding not only inaccurate predictions but also a false level of
confidence about the quality of their risk assessments. This commonly occurs because models are applied to
patients with different clinical characteristics and risk of disease, to medical practices that differ from those used
to develop the model, and to methods of care that constantly change over time. The current scientific paradigm
does not readily allow models to accommodate these differences. As a result, model accuracy is often
compromised for years of clinical use, new models are slow to be developed (if at all), and these new models are
no better able to account for changing patient populations or medical practice than the original models.
A potential solution to these problems is `Dynamic Prediction Modeling.' Rather than using existing models in
practice without accommodating their inevitable degradation in performance and, at best, infrequently developing
new models with the same limitations, dynamic prediction modeling updates an existing prediction model
continually as new data are accrued. In this approach, the updated models combine the information that is
captured in the original model with data from new patients to produce an updated model for future predictions. As
a result of this ongoing model-refinement process, dynamic prediction models have the potential to enhance and
maintain model accuracy in the presence of changing patient populations and medical practices over time.
Our objective in this proposal is to develop and test this new paradigm for risk prediction through rigorous
statistical and applied research, to provide comprehensive guidance for the real-world use of dynamic prediction
modeling, and thus to remove critical barriers to the wider dissemination of these methods in clinical research
and practice. Specifically, this project will: (1) use formal and comprehensive simulations to develop guidelines
for implementing dynamic model recalibration, revision, and extension; (2) test and compare these dynamic
prediction modeling approaches with the traditional approach to prediction modeling in two real world and diverse
clinical settings, and then refine the methods to enhance accuracy and generalizability; and (3) formally and
prospectively test the implementation of dynamic prediction modeling in a large, multicenter population of
intensive care unit patients to demonstrate the utility, feasibility, and accuracy of dynamic prediction modeling
methods in a real-world setting. The ultimate goal is to enhance the generalizability and usefulness of prediction
models and improve our ability to deliver precision care.
项目概要
风险预测是所有临床实践和公共卫生所固有的,并且一直是科学研究的主题
几十年。正式的预测模型经常用于增强临床医生和研究人员的量化能力
并沟通风险。然而,预测模型只有在应用于外部时准确时才有用。
其开发的人口。不幸的是,当今使用的许多预测模型被证明是不准确的
当随着时间的推移应用于新的人群时,不仅会产生不准确的预测,而且会产生错误的水平
对风险评估质量的信心。这种情况通常会发生,因为模型应用于
具有不同临床特征和疾病风险的患者,接受与所使用的医疗实践不同的医疗实践
开发模型以及随时间不断变化的护理方法。当前的科学范式
不容易让模型适应这些差异。因此,模型的准确率通常是
经过多年的临床使用,新模型的开发速度很慢(如果有的话),并且这些新模型是
没有比原始模型更好地解释不断变化的患者群体或医疗实践。
这些问题的一个潜在解决方案是“动态预测建模”。而不是使用现有模型
练习时不去适应他们不可避免的性能下降,并且充其量也不会经常发展
新模型具有相同的局限性,动态预测建模更新了现有的预测模型
随着新数据的积累而不断变化。在这种方法中,更新的模型结合了以下信息:
使用来自新患者的数据在原始模型中捕获,以生成用于未来预测的更新模型。作为
由于这种持续的模型细化过程,动态预测模型有潜力增强和
在患者群体和医疗实践随时间变化的情况下保持模型的准确性。
我们在本提案中的目标是通过严格的方法开发和测试这种新的风险预测范式
统计和应用研究,为动态预测的实际使用提供全面指导
建模,从而消除这些方法在临床研究中更广泛传播的关键障碍
并练习。具体来说,该项目将:(1)使用正式且全面的模拟来制定指南
用于实施动态模型重新校准、修订和扩展; (2) 测试并比较这些动态
预测建模方法与传统的预测建模方法在两个现实世界中存在差异
临床环境,然后完善方法以提高准确性和普遍性; (3) 正式地和
前瞻性地测试动态预测模型在大型、多中心人群中的实施情况
向重症监护病房患者展示动态预测模型的实用性、可行性和准确性
现实环境中的方法。最终目标是增强预测的普遍性和有用性
模型并提高我们提供精准护理的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen E. Kimmel其他文献
Relationship between coronary angioplasty laboratory volume and outcomes after hospital discharge.
冠状动脉血管成形术实验室容量与出院后结果之间的关系。
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:4.8
- 作者:
Stephen E. Kimmel;William H. Sauer;C. Brensinger;J. Hirshfeld;Howard L. Haber;A. Localio - 通讯作者:
A. Localio
A simplified lesion classification for predicting success and complications of coronary angioplasty. Registry Committee of the Society for Cardiac Angiography and Intervention.
用于预测冠状动脉血管成形术的成功和并发症的简化病变分类。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:2.8
- 作者:
Ronald J. Krone;Warren K. Laskey;Craig Johnson;Stephen E. Kimmel;Lloyd W. Klein;Bonnie H. Weiner;J.J.Adolfo Cosentino;Sarah A. Johnson;Joseph D. Babb - 通讯作者:
Joseph D. Babb
Development and Validation of a Seizure Prediction Model in Neonates Following Cardiac Surgery.
心脏手术后新生儿癫痫发作预测模型的开发和验证。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
Maryam Y. Naim;M. Putt;N. Abend;Christopher W. Mastropietro;Deborah U. Frank;Jonathan M. Chen;Stephanie Fuller;James J. Gangemi;J. Gaynor;Kristin Heinan;D. Licht;C. Mascio;S. Massey;M. Roeser;Clyde J. Smith;Stephen E. Kimmel - 通讯作者:
Stephen E. Kimmel
Recommendations for the assessment and maintenance of proficiency in coronary interventional procedures: Statement of the American College of Cardiology.
评估和维持冠状动脉介入手术熟练程度的建议:美国心脏病学会声明。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
J. Hirshfeld;S. G. Ellis;D. Faxon;P. C. Block;J. R. Carver;J. S. Douglas;N. L. Eigler;M. Hlatky;D. R. Holmes;A. Hutter;A. Jacobs;W. L. J. Johnson;J. Jollis;Stephen E. Kimmel;Warren K. Laskey;H. Luft;D. Malenka;A. A. Oboler;A. E. Summers;A. Taussig;J. Forrester;P. Douglas;John D. Fisher;R. Gibbons;J. Halperin;Sanjay Kaul;D. Skorton;WilliamS Weintraub;W. Winters;M. Wolk - 通讯作者:
M. Wolk
Trajectories of Sacubitril/Valsartan Adherence Among Medicare Beneficiaries With Heart Failure
患有心力衰竭的医疗保险受益人中沙库巴曲/缬沙坦的依从性轨迹
- DOI:
10.1016/j.jacadv.2024.100958 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenxi Huang;Mustafa M. Ahmed;Earl J. Morris;Lanting Yang;Latoya O'Neal;Inmaculada Hernandez;Jiang Bian;Stephen E. Kimmel;Steven Smith;Jingchuan Guo - 通讯作者:
Jingchuan Guo
Stephen E. Kimmel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen E. Kimmel', 18)}}的其他基金
Dynamic Prediction Modeling to Improve Clinical Predictions
动态预测建模改善临床预测
- 批准号:
10367329 - 财政年份:2018
- 资助金额:
$ 60.94万 - 项目类别:
Genomic Medicine Pilot Demonstration Projects Coordinating Center
基因组医学试点示范项目协调中心
- 批准号:
8513587 - 财政年份:2013
- 资助金额:
$ 60.94万 - 项目类别:
Genomic Medicine Pilot Demonstration Projects Coordinating Center
基因组医学试点示范项目协调中心
- 批准号:
8682895 - 财政年份:2013
- 资助金额:
$ 60.94万 - 项目类别:
Career Development in Patient Centered Outcomes Research
以患者为中心的结果研究的职业发展
- 批准号:
8500193 - 财政年份:2012
- 资助金额:
$ 60.94万 - 项目类别:
Career Development in Patient Centered Outcomes Research
以患者为中心的结果研究的职业发展
- 批准号:
8416015 - 财政年份:2012
- 资助金额:
$ 60.94万 - 项目类别:
Comparative Effectiveness of Alternative Levels of Stroke
不同级别中风的比较有效性
- 批准号:
8337636 - 财政年份:2009
- 资助金额:
$ 60.94万 - 项目类别:
Do Amputees Benefit from Comprehensive Rehabilitation Services
截肢者能从综合康复服务中受益吗
- 批准号:
8301708 - 财政年份:2009
- 资助金额:
$ 60.94万 - 项目类别:
A randomized trial of interventions to improve warfarin adherence
一项提高华法林依从性的干预措施的随机试验
- 批准号:
8110710 - 财政年份:2008
- 资助金额:
$ 60.94万 - 项目类别:
A randomized trial of interventions to improve warfarin adherence
一项提高华法林依从性的干预措施的随机试验
- 批准号:
7682977 - 财政年份:2008
- 资助金额:
$ 60.94万 - 项目类别:
A randomized trial of interventions to improve warfarin adherence
一项提高华法林依从性的干预措施的随机试验
- 批准号:
7849525 - 财政年份:2008
- 资助金额:
$ 60.94万 - 项目类别:
相似海外基金
Infections and Drug Use-Related Morbidity and Mortality among People Who Use Drugs
吸毒者中感染和吸毒相关的发病率和死亡率
- 批准号:
10593896 - 财政年份:2022
- 资助金额:
$ 60.94万 - 项目类别:
Infections and Drug Use-Related Morbidity and Mortality among People Who Use Drugs
吸毒者中感染和吸毒相关的发病率和死亡率
- 批准号:
10380983 - 财政年份:2022
- 资助金额:
$ 60.94万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10408117 - 财政年份:2020
- 资助金额:
$ 60.94万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10625422 - 财政年份:2020
- 资助金额:
$ 60.94万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10038052 - 财政年份:2020
- 资助金额:
$ 60.94万 - 项目类别: