Integrating facial coding of expressive behavior and functional MRI: A multimodal approach linking momentary affective experience to concurrent changes in brain activity during drug craving

整合表达行为的面部编码和功能性 MRI:一种将瞬时情感体验与药物渴望期间大脑活动的并发变化联系起来的多模式方法

基本信息

项目摘要

Functional neuroimaging has become a widely used approach for studying substance use and addiction. This is particularly true in the area of research on cigarette smoking, which remains one of the largest threats to public health in the world. Neuroimaging research on the use of cigarettes and other substances has focused largely on characterizing brain activity associated with drug craving (an intense urge or desire to use drugs). This reflects the prevailing view that craving plays a central role in the maintenance of addiction and serves as a major barrier to treatment and recovery. Over the past several years, researchers using neuroimaging to study craving have benefitted from a number of significant methodological advances (e.g., increasingly sophisticated data analysis methods). However, the methods that are used for subjective affective experience have changed very little, and investigators must largely rely upon the same self-report measures that have been available since the earliest days of neuroimaging craving research. Used in isolation, self-report measures typically lack the sensitivity and precision that are needed to relate momentary affective experience to craving-related brain activity – an important limitation given the intimate relationship between craving and affect. The goal of the proposed research is to address this barrier to progress in the field by developing a novel method for measuring subjective affective experience in neuroimaging craving research that harnesses the unique strengths of facial expression analysis. Specifically, this method entails recording participants' facial expressions using a magnetic resonance imaging (MRI) compatible camera and then using facial coding analysis to derive a time course of affective reactions from the videos. By providing a way to unobtrusively capture moment-to-moment changes in affect, facial coding is an ideal method for connecting fluid affective reactions to dynamic changes in brain activity in the context of craving. The proposed strategy of integrating the assessment of facial expressions of affect with neuroimaging methods will be tested in a sample of adult daily smokers. Facial expressions will be recorded as participants complete a functional MRI (fMRI) protocol that has proven to be highly effective for provoking strong cigarette cravings. The specific aims of the project are: 1) To demonstrate the feasibility of measuring affect by analyzing video recordings of facial expressions displayed during fMRI; and 2) To demonstrate that moment-to-moment changes in affect are meaningfully associated with ongoing brain activity under conditions designed to produce robust craving. If successful, the proposed project will provide a foundation for using this new method to explore a variety of questions that are currently very difficult to address (e.g., characterizing how affect changes dynamically in relation to brain activity when smokers attempt to regulate their craving). Accordingly, this comprehensive and multimodal approach to assessment has the potential to make a major impact by providing new insights into the links between brain activity and affect in the domain of drug addiction and in many other areas, more broadly.
功能神经影像已成为研究物质使用和成瘾的广泛使用的方法。 在吸烟研究领域尤其如此,吸烟仍然是人类面临的最大威胁之一 世界上公共健康的神经影像学研究重点关注香烟和其他物质的使用。 主要是描述与药物渴望(使用药物的强烈冲动或欲望)相关的大脑活动。 这反映了一种普遍的观点,即渴望在成瘾的维持中起着核心作用,并作为 在过去的几年里,研究人员使用神经影像学来解决这一问题。 学习渴望受益于许多重大的方法论进步(例如,越来越多的 复杂的数据分析方法)但是,用于主观情感体验的方法。 变化很小,调查人员必须在很大程度上依赖与过去相同的自我报告措施 自神经影像学渴望研究的早期就已存在,用于隔离、自我报告。 测量通常缺乏关联瞬时情感体验所需的敏感性和精确度 与渴望相关的大脑活动——考虑到渴望和渴望之间的密切关系,这是一个重要的限制 拟议研究的目标是通过开发一种方法来解决该领域进展的障碍。 在神经影像渴望研究中测量主观情感体验的新方法 具体来说,该方法需要记录参与者的面部表情。 使用兼容磁共振成像 (MRI) 的相机表达表情,然后使用面部编码 通过提供一种不显眼的方式来分析从视频中得出情感反应的时间过程。 捕捉情感的瞬间变化,面部编码是连接流动情感的理想方法 所提出的整合策略是在渴望的背景下对大脑活动动态变化的反应。 将在成人样本中测试通过神经影像学方法评估面部表情的影响 当参与者完成功能性 MRI (fMRI) 方案时,将记录每日吸烟者的面部表情。 事实证明,这对于激发强烈的香烟渴望非常有效 该项目的具体目标。 是:1)论证通过分析面部表情视频记录来测量情感的可行性 在功能磁共振成像期间显示;以及 2) 证明情感的每时每刻的变化是有意义的 如果成功的话,与在旨在产生强烈渴望的条件下持续的大脑活动有关。 拟议的项目将为使用这种新方法探索各种问题提供基础 目前很难解决(例如,描述变化如何动态地影响大脑) 吸烟者试图调节其烟瘾时的活动)因此,这种综合性和多模式的。 评估方法有可能通过提供对链接的新见解而产生重大影响 药物成瘾领域以及更广泛的许多其他领域的大脑活动和影响之间的关系。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constructing Craving: Applying the Theory of Constructed Emotion to Urge States.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Jeffrey Wilson其他文献

Stephen Jeffrey Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Jeffrey Wilson', 18)}}的其他基金

Linking brain network dynamics to imminent smoking lapse risk and behavior
将大脑网络动态与即将戒烟的风险和行为联系起来
  • 批准号:
    10595369
  • 财政年份:
    2022
  • 资助金额:
    $ 19.98万
  • 项目类别:
Linking brain network dynamics to imminent smoking lapse risk and behavior
将大脑网络动态与即将戒烟的风险和行为联系起来
  • 批准号:
    10708145
  • 财政年份:
    2022
  • 资助金额:
    $ 19.98万
  • 项目类别:
Nicotine dependence, reward sensitivity, and lapse behavior in light smokers
轻度吸烟者的尼古丁依赖、奖赏敏感性和戒烟行为
  • 批准号:
    8826724
  • 财政年份:
    2014
  • 资助金额:
    $ 19.98万
  • 项目类别:
(PQA1) FMRI Neurofeedback and Descision-Making in Habitual Cigarette Smokers
(PQA1) 习惯性吸烟者的 FMRI 神经反馈和决策
  • 批准号:
    8792085
  • 财政年份:
    2014
  • 资助金额:
    $ 19.98万
  • 项目类别:
(PQA1) FMRI Neurofeedback and Descision-Making in Habitual Cigarette Smokers
(PQA1) 习惯性吸烟者的 FMRI 神经反馈和决策
  • 批准号:
    8928110
  • 财政年份:
    2014
  • 资助金额:
    $ 19.98万
  • 项目类别:
Effects of Smoking Expectancy on the Neural Response to Reward in Human Smokers
吸烟预期对人类吸烟者奖励神经反应的影响
  • 批准号:
    7975975
  • 财政年份:
    2010
  • 资助金额:
    $ 19.98万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
  • 批准号:
    10638866
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
  • 批准号:
    10637874
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
  • 批准号:
    10639073
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了