Deciphering the mechanisms underlying multicolumnar neuron pathfinding and specification in the Drosophila melanogaster optic lobe
破译果蝇视叶多柱神经元寻路和规范的机制
基本信息
- 批准号:9769762
- 负责人:
- 金额:$ 6.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAntibodiesAxonBlindnessBrainBrain InjuriesCandidate Disease GeneCell Adhesion MoleculesCellsColorColumnar CellComplexCuesDataDrosophila genusDrosophila melanogasterExhibitsEyeFluorescent Antibody TechniqueGangliaGenesGeneticGenetic ScreeningImageImaging TechniquesInterneuronsKnowledgeLabelLocationMapsModelingMolecularMothersMotionMutateNervous system structureNeurodegenerative DisordersNeurologyNeuronsNeuropilOptic LobeOpticsOutputPatternPhotoreceptorsProcessPublic HealthRNA InterferenceRegenerative MedicineReportingResearchRetinaRoleScientistSeriesSignal TransductionSpecific qualifier valueStainsSystemTestingTimeTo specifyVisionVisualVisual system structureWorkaxon guidanceaxonal guidanceaxonal pathfindingcell typedevelopmental neurobiologydroplet sequencingexperimental studyflyimaginal discinsightmorphogensmutantneuroblastneuroepitheliumneuronal circuitrynotch proteinnovelreceptive fieldrecruitrelating to nervous systemretinotopicstem cell therapytranscription factortranscriptometranscriptome sequencingvisual informationvisual process
项目摘要
Project Summary/Abstract:
How circuits in the brain are assembled is a crucial question in developmental neurobiology. The
Drosophila visual system presents an elegant model to study this question; the optic lobes comprise ~60,000
neurons that allow the animal to perform sophisticated visual tasks. These cells are organized into 800
columns representing the 800 unit eyes (ommatidia) that perceive visual information in the retina.
The
medulla
is the most complex neuropil of the visual system. Though each of the ten medulla layers is highly specialized,
a consistent neuronal topology is maintained from layer to layer, in a phenomenon known as retinotopy. The
host lab has identified three processes that generate the diversity of the over 80 neural types in the medulla.
- First, each of the ~800 neuroblasts (NBs) sequentially expresses a series of six temporal transcription factors
(tTFs), whose combination specifies different types of neuronal progeny. The integrated output of this system
allows each NB to specify about 20 types of uni-columnar (UC) neurons at a 1:1 ratio to medulla columns.
- Second, spatial cues within the OPC act in combination with tTFs to specify the fate of a second set of
neurons—multicolumnar neurons (MC neurons)—that have a larger receptive field, exist at less than a 1:1 ratio
to columns, and that innervate anywhere from two columns to half of the medulla, depending on the cell type.
These MC neurons are only produced in subregions of the neuroepithelium.
- Finally, Notch signaling (Non or Noff) further diversifies neuronal identity of the two neurons emerging from the
division of the ganglion mother cell, the single transit-amplifying descendant of each NB.
While MC neurons derive from restricted regions of the OPC, they find their targets and connect to the entire
medulla. Although descriptions of MC neuron organization have been reported, the mechanisms behind how
they find their targets are mostly unknown. Furthermore, previous research regarding MC neuron specification
has focused on descendants of neuroblasts expressing the tTF Homothorax; the descendants of other tTF-
expressing NBs have yet to be explored. My work seeks to understand how MC neurons are specified, and
how this fate specification informs the cell's decisions in axon guidance, and thus, the establishment of
retinotopy in this system. Specific aim 1 will look at the dynamics of MC neuron targeting within the medulla.
We will use live imaging and immunofluorescence techniques to determine the lineage of MC neurons, identify
the transcription factors expressed in these cells, and observe the mechanisms used by these cells to find their
targets. Specific aim 2 will build upon the knowledge unearthed in Specific aim 1, and will use a candidate
approach combined with transcriptome analysis of sorted MC cells in order to identify the genes required for
MC neuron identity and pathfinding. Our research will provide novel insight into the physical and genetic
mechanisms underlying how complex neurons are generated and find multiple targets on the retinotopic map,
allowing us to better comprehend basic principles of nervous system assembly.
项目摘要/摘要:
大脑中的圆圈如何组装是发育神经生物学中的一个关键问题。
果蝇视觉系统提出了一个优雅的模型来研究这个问题。光学爱好包括约60,000
使动物可以执行复杂的视觉任务的神经元。这些细胞被组织成800
代表800个单位眼(Ommatidia)的列,这些视觉信息百分比在视网膜中。
这
髓质
是视觉系统中最复杂的神经胶体。尽管十个延髓层中的每一个都非常专业,但
在一种称为视网膜的现象中,一致的神经元拓扑保持了一致的层次。
主机实验室已经确定了三个过程,这些过程产生了髓质中80多种神经类型的多样性。
- 首先,〜800个神经细胞(NB)中的每一个都依次表达一系列六个临时转录因子
(TTFS),其组合指定了不同类型的神经元后代。该系统的集成输出
允许每个NB以1:1的比例指定约20种类型的Uni-Collumnar(UC)神经元与髓质柱。
- 第二,OPC ACT中的空间提示与TTF结合使用,以指定第二组的命运
神经元 - 多个神经元(MC神经元) - 具有较大的接受场,以小于1:1的比例存在
到列,并根据单元格类型支配从两个列到一半的髓质。
这些MC神经元仅在神经上皮的子区域产生。
- 最后,Notch信号(非或NOFF)进一步使两个神经元的神经元身份多样化。
神经节母细胞的划分,每个NB的单个传输放大后代。
尽管MC神经元来自OPC的受限区域,但他们找到了目标并连接到整个
尽管已经报道了MC神经元组织的描述,但如何背后的机制
他们发现自己的目标大多未知。此外,先前有关MC神经元规范的研究
专注于表达TTF同胸的神经细胞的后代;其他TTF-的后代
表达NBS尚未探索。我的工作试图了解如何指定MC神经元,并且
该命运规范如何在Axon指导中为细胞的决定提供信息,因此建立
该系统中的视网膜。具体目标1将介绍髓质内MC神经元靶向的动力学。
我们将使用实时成像和免疫荧光技术来确定MC神经元的谱系,识别
这些细胞中表达的转录因子,并观察这些细胞使用的机制
目标。特定目标2将基于特定目标1中发现的知识,并将使用候选人
方法与分类的MC细胞的转录组分析相结合,以识别所需的基因
MC神经元的身份和路径。我们的研究将提供对物理和遗传的新见解
基于如何生成复杂神经元并在视网膜图上找到多个目标的机制,
使我们能够更好地理解神经系统组装的基本原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer A Malin其他文献
Spatial patterning regulates neuron numbers in the Drosophila visual system
空间模式调节果蝇视觉系统中的神经元数量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jennifer A Malin;Yen;Félix Simon;Evelyn Keefer;C. Desplan - 通讯作者:
C. Desplan
Jennifer A Malin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer A Malin', 18)}}的其他基金
Understanding the regulation of neuron cell number and arbor size
了解神经元细胞数量和乔木大小的调节
- 批准号:
10327719 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
Deciphering the mechanisms underlying multicolumnar neuron pathfinding and specification in the Drosophila melanogaster optic lobe
破译果蝇视叶多柱神经元寻路和规范的机制
- 批准号:
9328455 - 财政年份:2017
- 资助金额:
$ 6.56万 - 项目类别:
相似国自然基金
募集HBV抗体用于肿瘤免疫治疗的分子设计及作用机制
- 批准号:22377041
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
四种停用喹诺酮类药物高分辨力单克隆抗体的精准制备及其识别机制研究
- 批准号:32373059
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DHEA协同别构纳米抗体通过ADGRG2调控男性生殖功能障碍的作用及机制
- 批准号:82371629
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向DLL3和γδ T细胞的双特异抗体对小细胞肺癌的免疫治疗活性研究
- 批准号:32300783
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the contribution of amyloidogenic APP processing to AD-relevant impaired synaptic protein turnover
阐明淀粉样蛋白生成 APP 加工对 AD 相关突触蛋白周转受损的影响
- 批准号:
10538032 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
A three dimensional multimodal cellular connectivity atlas of the mouse hypothalamus
小鼠下丘脑三维多模态细胞连接图谱
- 批准号:
10719606 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Fluorescence-based methods for microconnectivity analysis in neocortex
基于荧光的新皮质微连接分析方法
- 批准号:
10413555 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
Role of Peripheral Inflammation in TBI Pathobiology
外周炎症在 TBI 病理学中的作用
- 批准号:
10553222 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别: