Trans-Sheet Illumination Microscopy (TranSIM) for decoding whole brain activity at submillisecond temporal resolution

跨片照明显微镜 (TranSIM) 以亚毫秒时间分辨率解码全脑活动

基本信息

  • 批准号:
    9552856
  • 负责人:
  • 金额:
    $ 14.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Today’s knowledge of large-scale neural networks is advancing along two orthogonal directions. Spatial (static, structural) connectomic understanding is achieved through optical and electron microscopy; yielding high spatial resolution with limited or no temporal information. Conversely, electrophysiological methods provide an exceptional temporal understanding of millisecond-order neurodynamic activities in vivo, with restrictions placed on spatial information. Unfortunately, these approaches have historically been rather mutually exclusive and incompatible with each other. This proposal is precisely aimed at breaking the methodological barrier between spatial and temporal observation, through innovative 3D optical scanning concepts which rival the temporal resolution of electrophysiology. The resulting system is ideally suited to imaging genetically expressed voltage- sensitive fluorescent markers. The proposed optical microscope is named TranSIM: Trans-Sheet Illumination Microscope. It is designed to observe brain-wide neurodynamics in model organisms (up to 1 mm3) with ~1 μm resolution in space, and sub- millisecond resolution in time. Unlike a conventional sheet illumination microscope, which illuminates a single x-y focal plane of the detection objective (on the z-axis), the conceived design forms a light sheet in the transverse direction along the z-axis (y-z plane). This sheet of light is then rapidly scanned along the x-axis as it is imaged. Multiple thin z-slices are then collected simultaneously by spatially multiplexing next-generation large-format sCMOS sensors. Regions of Interest, each with slight depth off-set from the focal plane, will map to a segmented part of the sensor, creating an eight-image focal volume in the time of a single frame. As a result, a thick brain volume can be covered by scanning the focal (x-y) plane (~1 mm2) in one direction (in x) at the frame rate of the sCMOS. The fastest sCMOS cameras are currently being jointly developed and optimized for this purpose. A line confocal readout will be implemented electrically by a rolling shutter mode of the sCMOS sensor to minimize contamination of scattering light. With proper Regions of Interest, a large volume (800 x 80 x 1000 μm3) can be scanned at 780 volumes / second; 100 times faster than today’s fastest 3D optical microscopy systems. A smaller volume (100 x 80 x 1000 μm3) can be scanned at an unprecedented rate of 6240 volumes / second, reaching the sub-millisecond temporal resolution of electrophysiological sampling. The illuminative sheet can be formed through the same detective objective for enhanced geometrical flexibility, or by an orthogonal objective (as in conventional horizontal sheet illumination) to minimize phototoxicity. In the case of a multi-view based on four-objective geometry, a large open volume (40 x 20 x 8 mm3) exists between lenses, to observe model organisms (like Zebrafish) under visual and optogenetic stimulation. Such a volume also provides smaller model organisms (C. elegans and Drosophila larvae) with ample space to navigate freely in 3D, while whole brain neural activity is monitored and controlled under various external and internal (optogenetic) stimulations.
当今对大规模神经网络的了解正在沿两个正交的方向前进。通过光学显微镜和电子显微镜实现空间(静态,结构)连接组的理解;产生高空间分辨率,没有临时信息有限或没有临时信息。相反,电生理方法提供了对体内毫秒的神经动力学活动的特殊暂时理解,并在空间信息上施加了限制。不幸的是,这些方法在历史上是相互排斥的,彼此不相容。该提案精确地旨在通过创新的3D光学扫描概念来打破空间和临时观察之间的方法论障碍,这些概念是电生理学的临时分辨率。所得系统非常适合想象一般表达的电压敏感荧光标记。 所提出的光学显微镜命名为跨表照明显微镜。它旨在观察模型生物(长达1 mm3)中的脑部神经动力学,空间分辨率约为1μm,并且时间下毫秒分辨率。与传统的板照明显微镜不同,该显微镜照亮了检测目标的单个X-y焦平面(在z轴上),构想的设计沿着Z轴(Y-Z平面)在横向方向上形成光片。然后,在成像时沿X轴迅速扫描了这张光片。然后通过空间多路复用下一代大型SCMOS传感器同时收集多个薄Z线。感兴趣的区域,每个区域都从焦平面上略有深度偏置,将映射到传感器的分段部分,在单个框架的时间内创建八模拟的焦点体积。结果,通过SCMOS的帧速率以一个方向(x)扫描焦点(X-Y)平面(〜1 mm2)可以覆盖厚的大脑体积。 目前,最快的SCMO摄像机正在共同开发和优化。线共聚焦读数将通过SCMOS传感器的滚动快门模式进行电气实现,以最大程度地减少散射光的污染。有了适当的关注区域,可以以780卷 /秒的范围扫描大量的大容量(800 x 80 x1000μm3)。比当今最快的3D光学显微镜系统快100倍。较小的体积 (100 x 80 x1000μm3)可以以6240卷 /秒的前所未有的速率扫描,以达到电生理采样的亚毫秒临时分辨率。 可以通过相同的侦探物镜形成照明纸,以增强几何柔韧性,也可以通过正交物镜(如常规水平板照明)形成,以最大程度地减少光毒性。在基于四目标几何形状的多视图的情况下,镜头之间存在较大的开放体积(40 x 20 x 8 mm3),以观察视觉和光遗传刺激下模型生物(如斑马鱼)。这样的体积还提供了较小的模型生物(秀丽隐杆线虫和果蝇幼虫),并提供足够的空间,可以在3D中自由导航,而在各种外部和内部(光学遗传)刺激下,整个脑神经元活动受到监测和控制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATSUSHI ARISAKA其他文献

KATSUSHI ARISAKA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATSUSHI ARISAKA', 18)}}的其他基金

Trans-Sheet Illumination Microscopy (TranSIM) for decoding whole brain activity at submillisecond temporal resolution
跨片照明显微镜 (TranSIM) 以亚毫秒时间分辨率解码全脑活动
  • 批准号:
    9395620
  • 财政年份:
    2017
  • 资助金额:
    $ 14.65万
  • 项目类别:

相似国自然基金

航天低温推进剂加注系统气液状态声学监测技术研究
  • 批准号:
    62373276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
  • 批准号:
    52350039
  • 批准年份:
    2023
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
海洋声学功能材料发展战略研究
  • 批准号:
    52342304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    专项项目

相似海外基金

Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
  • 批准号:
    10740796
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
  • 批准号:
    10346105
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
  • 批准号:
    10444172
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
  • 批准号:
    10352016
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
  • 批准号:
    10630111
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了