Trans-Sheet Illumination Microscopy (TranSIM) for decoding whole brain activity at submillisecond temporal resolution

跨片照明显微镜 (TranSIM) 以亚毫秒时间分辨率解码全脑活动

基本信息

  • 批准号:
    9552856
  • 负责人:
  • 金额:
    $ 14.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Today’s knowledge of large-scale neural networks is advancing along two orthogonal directions. Spatial (static, structural) connectomic understanding is achieved through optical and electron microscopy; yielding high spatial resolution with limited or no temporal information. Conversely, electrophysiological methods provide an exceptional temporal understanding of millisecond-order neurodynamic activities in vivo, with restrictions placed on spatial information. Unfortunately, these approaches have historically been rather mutually exclusive and incompatible with each other. This proposal is precisely aimed at breaking the methodological barrier between spatial and temporal observation, through innovative 3D optical scanning concepts which rival the temporal resolution of electrophysiology. The resulting system is ideally suited to imaging genetically expressed voltage- sensitive fluorescent markers. The proposed optical microscope is named TranSIM: Trans-Sheet Illumination Microscope. It is designed to observe brain-wide neurodynamics in model organisms (up to 1 mm3) with ~1 μm resolution in space, and sub- millisecond resolution in time. Unlike a conventional sheet illumination microscope, which illuminates a single x-y focal plane of the detection objective (on the z-axis), the conceived design forms a light sheet in the transverse direction along the z-axis (y-z plane). This sheet of light is then rapidly scanned along the x-axis as it is imaged. Multiple thin z-slices are then collected simultaneously by spatially multiplexing next-generation large-format sCMOS sensors. Regions of Interest, each with slight depth off-set from the focal plane, will map to a segmented part of the sensor, creating an eight-image focal volume in the time of a single frame. As a result, a thick brain volume can be covered by scanning the focal (x-y) plane (~1 mm2) in one direction (in x) at the frame rate of the sCMOS. The fastest sCMOS cameras are currently being jointly developed and optimized for this purpose. A line confocal readout will be implemented electrically by a rolling shutter mode of the sCMOS sensor to minimize contamination of scattering light. With proper Regions of Interest, a large volume (800 x 80 x 1000 μm3) can be scanned at 780 volumes / second; 100 times faster than today’s fastest 3D optical microscopy systems. A smaller volume (100 x 80 x 1000 μm3) can be scanned at an unprecedented rate of 6240 volumes / second, reaching the sub-millisecond temporal resolution of electrophysiological sampling. The illuminative sheet can be formed through the same detective objective for enhanced geometrical flexibility, or by an orthogonal objective (as in conventional horizontal sheet illumination) to minimize phototoxicity. In the case of a multi-view based on four-objective geometry, a large open volume (40 x 20 x 8 mm3) exists between lenses, to observe model organisms (like Zebrafish) under visual and optogenetic stimulation. Such a volume also provides smaller model organisms (C. elegans and Drosophila larvae) with ample space to navigate freely in 3D, while whole brain neural activity is monitored and controlled under various external and internal (optogenetic) stimulations.
如今,大规模神经网络的知识正在沿着两个正交方向发展。空间(静态、结构)连接体的理解是通过光学和电子显微镜实现的;在有限或没有时间信息的情况下产生高空间分辨率,电生理学方法提供了特殊的时间信息。遗憾的是,这些方法在历史上一直是相互排斥且互不兼容的。通过创新的 3D 光学扫描概念进行观察,其时间分辨率可与电生理学的时间分辨率相媲美。由此产生的系统非常适合对基因表达的电压敏感荧光标记进行成像。 所提出的光学显微镜被命名为 TranSIM:跨片照明显微镜,其设计用于观察模型生物体(最大 1 mm3)的全脑神经动力学,空间分辨率约为 1 μm,时间分辨率为亚毫秒。传统的片状照明显微镜,其照亮检测物镜的单个x-y焦平面(在z轴上),概念设计在沿z轴(y-z)的横向上形成光片然后,通过空间复用下一代大幅面 sCMOS 传感器,在成像时沿 x 轴快速扫描该光片,同时收集多个薄 z 切片,每个感兴趣区域都有轻微的深度偏移。从焦平面,将映射到传感器的分段部分,在单帧时间内创建八图像焦体积。因此,可以通过扫描焦(x-y)平面来覆盖厚的大脑体积。 (~1 mm2) 在 sCMOS 帧速率下沿一个方向(x)。 目前正在为此联合开发和优化最快的 sCMOS 相机,通过 sCMOS 传感器的卷帘快门模式以电气方式实现线共焦读出,以最大程度地减少散射光的污染,并具有适当的感兴趣区域(800)。 x 80 x 1000 μm3)可以以 780 体积/秒的速度进行扫描;比当今最快的 3D 光学显微镜系统快 100 倍。体积 (100 x 80 x 1000 μm3) 可以以前所未有的 6240 卷/秒的速率进行扫描,达到电生理采样的亚毫秒时间分辨率。 照明片可以通过相同的探测物镜形成以增强几何灵活性,或者通过正交物镜(如传统的水平片照明)形成以最小化光毒性。在基于四物镜几何形状的多视图的情况下,大的光毒性。镜头之间存在开放体积(40 x 20 x 8 mm3),用于在视觉和光遗传学刺激下观察模型生物(如斑马鱼),这样的体积还提供了较小的模型生物(秀丽隐杆线虫和线虫)。果蝇幼虫)有足够的空间在 3D 中自由导航,同时在各种外部和内部(光遗传学)刺激下监测和控制全脑神经活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATSUSHI ARISAKA其他文献

KATSUSHI ARISAKA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATSUSHI ARISAKA', 18)}}的其他基金

Trans-Sheet Illumination Microscopy (TranSIM) for decoding whole brain activity at submillisecond temporal resolution
跨片照明显微镜 (TranSIM) 以亚毫秒时间分辨率解码全脑活动
  • 批准号:
    9395620
  • 财政年份:
    2017
  • 资助金额:
    $ 14.65万
  • 项目类别:

相似国自然基金

鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
  • 批准号:
    62301355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
  • 批准号:
    82302198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
  • 批准号:
    12371422
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
  • 批准号:
    10740796
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
  • 批准号:
    10346105
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
  • 批准号:
    10444172
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
  • 批准号:
    10352016
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
  • 批准号:
    10630111
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了