Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
基本信息
- 批准号:9899260
- 负责人:
- 金额:$ 44.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-10 至 2021-09-29
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelAreaBacteriaBindingBinding SitesBiological ModelsBiologyCREBBP geneChromatinComplexDNADNA MethylationDNA SequenceDNA-Directed RNA PolymeraseDataDependenceDevelopmental GeneDiseaseDrosophila genusDrosophila melanogasterEmbryoEnergy MetabolismEnergy-Generating ResourcesEnhancersEquilibriumEukaryotaEvolutionFoundationsGene Expression RegulationGenesGenetic TranscriptionGenomeGraphLaboratoriesLeadLightMeasuresMediatingMediator of activation proteinMedicineMethodsModelingMolecularMutagenesisNucleosomesPatternPhenotypePhysicsPlant RootsPlayPositioning AttributePost-Translational Protein ProcessingProcessPropertyProteinsRecording of previous eventsRegulationRoleStudy modelsSystemTestingTheoretical StudiesThermodynamicsTimeTranscriptional RegulationWorkbasechromatin modificationchromatin remodelingdesignexperimental studyflexibilityhistone modificationinformation processinginterdisciplinary collaborationknock-downmRNA Expressionmathematical methodsmathematical modelmathematical theoryneglectprotein expressionrecruitresponsetranscription factor
项目摘要
PROJECT ABSTRACT
Gene regulation – how genes are turned on in the right place, at the right time and in the right
amount – is a problem central to most areas of biology and medicine. Our understanding of
gene regulation began with classical studies in bacteria, which introduced the idea that proteins
called “transcription factors” (TFs) determine which gene is turned on by binding to regulatory
DNA sequences and recruiting RNA polymerase (RNAP). The situation in eukaryotes, however,
is far more complicated. We focus in this proposal on two critical aspects of eukaryotic gene
regulation that are not addressed in the bacterial paradigm. First, eukaryotic DNA is packaged
into chromatin and accessibility to TF binding sites is dynamically re-organised by continuously
expending external sources of energy, such as ATP. Second, in eukaryotes multi-protein co-
regulators such as mediator and CREB-binding protein (CBP) intercede between TFs and
RNAP, serving as “integrators” of regulatory information. Pioneering studies from several
laboratories have identified many of the molecular components involved in this regulatory
complexity, however, the quantitative concepts used to reason about how eukaryotic gene
regulation are still largely based on the bacterial paradigm. This is an alarming discrepancy in
light of the central importance of gene regulation. In recent work, we used mathematical models
rooted in physics to show that this bacterial paradigm cannot account for experimentally
measured data in eukaryotes. We examined, in particular, the question of how sharply a gene is
turned on in response to a TF, an important property in many contexts. We introduced new
concepts for analyzing information integration by co-regulators and energy expenditure and
showed how these processes could explain the observed sharpness. In this proposal, we seek
to build upon this highly-productive, inter-disciplinary collaboration. We will integrate
mathematical theory with quantitative experiments in the well-studied model organism
Drosophila melanogaster to identify which molecular mechanisms of information integration and
energy expenditure are involved in regulating the developmental gene hunchback, whose sharp
expression is crucial for patterning the early fruitfly embryo. As in the classical bacterial studies,
we anticipate that a deep analysis of this particular gene will provide a new foundation on which
to understand in quantitative terms the regulation of other eukaryotic genes and thus, that this
study will have broad impact across biology and medicine.
项目摘要
基因调控——基因如何在正确的地点、正确的时间和正确的时间被开启
数量——是我们对生物学和医学大多数领域的理解的核心问题。
基因调控始于细菌的经典研究,该研究引入了蛋白质
称为“转录因子”(TF) 的基因通过与调控因子结合来决定被开启
然而,DNA 序列和募集 RNA 聚合酶 (RNAP) 的情况。
情况要复杂得多。我们在这个提案中重点关注真核基因的两个关键方面。
细菌范式中未涉及的调控首先,包装真核DNA。
进入染色质,并且 TF 结合位点的可及性通过不断地动态重组
消耗外部能量来源,例如 ATP。 其次,在真核生物中,多蛋白质共同作用。
诸如介质和 CREB 结合蛋白 (CBP) 等调节因子在 TF 和
RNAP,作为多项监管信息的开创性研究的“整合者”。
实验室已经鉴定出许多参与这一监管的分子成分
然而,复杂性是用于推理真核基因如何运作的定量概念
监管仍然主要基于细菌范式,这是一个令人震惊的差异。
鉴于基因调控的核心重要性,我们使用了数学模型。
植根于物理学,表明这种细菌范式无法通过实验来解释
我们特别研究了真核生物中的测量数据。
打开以响应 TF,这是在许多情况下的重要属性,我们引入了新的属性。
用于分析共同监管者的信息整合和能源支出的概念
展示了这些过程如何解释观察到的清晰度。在这个提案中,我们寻求。
在这种高效的跨学科合作的基础上,我们将进行整合。
在经过充分研究的模型生物体中进行定量实验的数学理论
果蝇识别信息整合和信息整合的分子机制
能量消耗参与调节驼背的发育基因,其尖锐
与经典细菌研究一样,表达对于早期果蝇胚胎的形成至关重要。
我们预计对这个特定基因的深入分析将为
以定量的方式理解其他真核基因的调节,从而,
研究将对生物学和医学产生广泛影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela H DePace其他文献
Angela H DePace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela H DePace', 18)}}的其他基金
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10493445 - 财政年份:2017
- 资助金额:
$ 44.58万 - 项目类别:
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10296507 - 财政年份:2017
- 资助金额:
$ 44.58万 - 项目类别:
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10676836 - 财政年份:2017
- 资助金额:
$ 44.58万 - 项目类别:
Multi-scale modeling of genetic variation in a developmental network
发育网络中遗传变异的多尺度建模
- 批准号:
8554281 - 财政年份:2013
- 资助金额:
$ 44.58万 - 项目类别:
Multi-scale modeling of genetic variation in a developmental network
发育网络中遗传变异的多尺度建模
- 批准号:
8740503 - 财政年份:2013
- 资助金额:
$ 44.58万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying neurons for interoception using simultaneous profiling of activity- and projection- specific populations
使用活动和投射特定群体的同步分析来识别用于内感受的神经元
- 批准号:
10687590 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Innovative therapeutic strategies to support elimination of river blindness
支持消除河盲症的创新治疗策略
- 批准号:
10754120 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Role of Selective Autophagy of Focal Adhesion in Intracranial Aneurysm
局部粘连选择性自噬在颅内动脉瘤中的作用
- 批准号:
10586692 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别: