Digital Phenotyping for Computational Models of Relapse Prediction in Early Course Psychosis
早期精神病复发预测计算模型的数字表型分析
基本信息
- 批准号:9898476
- 负责人:
- 金额:$ 19.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAnxietyAwardAwarenessBackBehaviorBehavioralBiological MarkersCaregiver BurdenCaringCellular PhoneChronicChronic DiseaseClinicalClinical InformaticsClinical ResearchCognitionCognitiveComplexComputer ModelsComputing MethodologiesDataData ScienceDetectionDevelopmentDevicesDiseaseEarly InterventionEffectivenessEmergency department visitEngineeringEnsureEnvironmentEnvironmental Risk FactorEventFeedbackGoalsHealth SciencesHealth Services AccessibilityHospitalizationHumanImpaired cognitionIn SituIndividualInterviewIsraelLearningLogistic RegressionsMachine LearningMeasurementMeasuresMedical centerMedicineMental disordersMentorsMethodsModelingMoodsNatureOutcomeOwnershipParticipantPatient Self-ReportPharmaceutical PreparationsPhenotypePhysical activityPhysiologicalPhysiologyPilot ProjectsPopulationPredictive ValueProcessProductivityProspective StudiesPsychiatryPsychotic DisordersQuality of lifeRelapseReproducibilityResearchResearch Domain CriteriaResearch MethodologyResearch PersonnelRiskRisk FactorsRunningSchizophreniaScienceSeverity of illnessSleepStatistical MethodsStructureSurveysSymptomsSystemTechnologyTimeTrainingTraining ProgramsTreatment CostVariantWorkbasebiological researchbiomarker developmentcare costscare systemsclinical heterogeneityclinical phenotypeclinically relevantcognitive testingcomputational basiscost effectivedata modelingdesigndigitaldisease classificationeconomic costevidence baseexperiencefitbitfunctional disabilityfunctional outcomesimprovedin vivoindividual patientlongitudinal analysislongitudinal coursemHealthmachine learning methodmedical specialtiesmobile computingmultidisciplinaryneural circuitneuropsychiatryneurotoxicopen sourcepersonalized interventionpredictive modelingpreventprimary outcomerelapse predictionrelapse riskresponsible research conductsecondary outcomesensorsevere mental illnesssmart watchsocialtoolwearable devicewearable sensor technology
项目摘要
Project Summary
The candidate requests support for a four-year program of training and research to better understand
how smartphone based digital phenotyping and computational methods can predict relapse and create digital
phenotypes of symptoms and clinical outcomes in early course psychosis.
In the proposed training plan, the candidate will build upon his previous experiences in engineering,
clinical informatics, and clinical psychiatry to perform a multidisciplinary project at Beth Israel Deaconess
Medical Center. His training plan includes training in: 1) statistical methods for multivariate longitudinal analysis
and predictive inference 2) the neuropsychiatric assessment of schizophrenia 3) longitudinal clinical research
methodology with a focus on mobile technologies, and 4) the responsible conduct of research.
Even with appropriate care, relapse is common in early course psychosis and each episode is
associated higher costs of care, poorer lifetime outcomes, and chronicity of the disease. There is a need to
learn more about the personal factors associated with relapse for individual patients in order to improve risk
predictions, ensure appropriate early interventions, and support coordinated specialty care services for
schizophrenia. This study proposes that smartphones sensors eg (GPS, accelerometer), wearable devices like
smartwatches collecting physiology, and smartphone based surveys and cognitive tests, when combined with
appropriate statistical methods, can capture digital biomarkers, refereed to here as digital phenotypes, of early
course psychosis that can offer personalized relapse prediction and augment population level risk factors.
This candidate's research plan seeks to: 1) propose digital phenotypes and relapse models of early
course psychosis captured in an affordable and scalable manner from subject's personal smartphones as well
as a wearable sensor in order to automatically collect self-report of symptoms, behaviors, cognition, and
physiology 2) and evaluate the accuracy of digital phenotypes and the relapse prediction models.
This study proposes to address this hypothesis by utilizing smartphone based digital phenotyping
methods, primarily through running the Beiwe app on subjects' own smartphones, to capture longitudinal data
on symptoms, behaviors, cognition, and physiology across subjects' natural environments. These studies will
be performed across 3.5 years in subjects with early course psychosis and range between 6 to 12 months.
The broader aim of this research is to understand the systems and processes, both personal and
environmental, which contribute to relapse in early course psychosis. An understanding of the computational
basis of relapse will inform better nosology, allow development of biomarkers of illness that may offer better
targets for biological research, inform development of personalized interventions for psychotic illnesses, and
help support early interventions for schizophrenia.
项目概要
候选人请求支持为期四年的培训和研究计划,以更好地了解
基于智能手机的数字表型和计算方法如何预测复发并创建数字
早期精神病的症状表型和临床结果。
在拟议的培训计划中,候选人将基于他以前的工程经验,
临床信息学和临床精神病学在贝斯以色列女执事执行多学科项目
医疗中心。他的培训计划包括以下方面的培训:1)多元纵向分析的统计方法
和预测推理 2) 精神分裂症的神经精神评估 3) 纵向临床研究
重点关注移动技术的方法论,以及 4) 负责任的研究行为。
即使采取适当的护理,早期精神病复发也很常见,并且每次发作都
与较高的护理成本、较差的终生结果和疾病的慢性化相关。有必要
了解更多与个体患者复发相关的个人因素,以降低风险
预测,确保适当的早期干预,并支持协调的专业护理服务
精神分裂症。这项研究提出智能手机传感器(GPS、加速计)、可穿戴设备等
智能手表收集生理学、基于智能手机的调查和认知测试,并与
适当的统计方法,可以捕获早期的数字生物标记,这里称为数字表型
精神病过程可以提供个性化的复发预测并增加人群水平的危险因素。
该候选人的研究计划旨在:1)提出早期癌症的数字表型和复发模型
也可以通过受试者的个人智能手机以经济实惠且可扩展的方式捕获课程精神病
作为可穿戴传感器,自动收集症状、行为、认知和行为的自我报告
生理学2)并评估数字表型和复发预测模型的准确性。
本研究建议通过利用基于智能手机的数字表型分析来解决这一假设
方法,主要是通过在受试者自己的智能手机上运行 Beiwe 应用程序来捕获纵向数据
关于受试者自然环境中的症状、行为、认知和生理学。这些研究将
对患有早期精神病的受试者进行 3.5 年,范围在 6 至 12 个月之间。
这项研究更广泛的目标是了解个人和个人的系统和流程
环境因素,这会导致早期精神病的复发。对计算的理解
复发的基础将为更好的疾病学提供信息,允许开发疾病的生物标志物,从而提供更好的治疗效果
生物学研究的目标,为精神疾病的个性化干预措施的开发提供信息,以及
帮助支持精神分裂症的早期干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Torous其他文献
John Torous的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Torous', 18)}}的其他基金
Digital Phenotyping for Computational Models of Relapse Prediction in Early Course Psychosis
早期精神病复发预测计算模型的数字表型分析
- 批准号:
10133145 - 财政年份:2018
- 资助金额:
$ 19.1万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别:
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别: