Fractionating Organelle Subpopulations by Size and Type
按大小和类型划分细胞器亚群
基本信息
- 批准号:9897641
- 负责人:
- 金额:$ 28.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgingBiochemicalBiologicalBiological ModelsBiologyCell LineCentrifugationCollectionConsumptionCryoelectron MicroscopyDevelopmentDevicesDiffusionDiseaseDisease PathwayEndosomesEquilibriumEtiologyExhibitsFractionationFunctional disorderFutureGenesGeometryGoalsHealthcare SystemsHela CellsHeterogeneityInvestigationKnock-outLysosomesMethodsMicrochip Analytical ProceduresMicrofluidic MicrochipsMitochondriaMitochondrial DNAModelingMolecularMorphologyOrganellesOxidative StressParticle SizePathologicPathway interactionsPerformancePharmacotherapyPhenotypePlayPreparationProceduresProcessProtein AnalysisResolutionRoleSamplingSchemeSocietiesSpeedSystemTechniquesTechnologyTimeWestern BlottingWorkbasebiophysical propertiescostdesigndriving forcein silicolight scatteringmicrofluidic technologymigrationnew technologynovelparticlephysical propertyscale uptool
项目摘要
Abstract - Fractionating Organelle Subpopulations by Size and Type
Intracellular organelle heterogeneity in size and function is intimately associated with multiple dynamic
processes, including fusion, fission, biomolecular synthesis and storage within the organelle, biomolecular
transport, oxidative stress, and degradation (e.g. via mitophagy). Disease, aging, and drug treatment, perturbing
the homeostatic balance of such processes, affect each organelle type differently and for a given type may result
in organelle subpopulations with distinct size, function, or morphology. It is thus imperative to isolate organelles
of specific type and, when present, their subpopulations, because this is the first step in characterizing their
molecular composition, which is essential to decode alterations in function and molecular pathways that are
obscured by uncertain subcellular localization. However, the most common techniques are not capable to isolate
organelles based on size. Moreover, high purity organelle isolations require multiple, cumbersome and time
consuming processes prone to sample loss and still suffer from organelle co-isolation exhibiting similar physical
properties. Important biomolecular studies that must account for subcellular localization and that rely on sample
quality, are thus severely limited by the lack of suitable technologies for size-based organelle subpopulations
and functionally distinct organelles. This study will close this bottleneck by developing a novel fractionation
technology capable of separating organelles by size and type in sufficiently large amounts and with high purity.
The novel, cutting-edge microfluidic technology to fractionate organelles is based on migration mechanisms
that occur under non-equilibrium conditions, require tailored microenvironments and tailored driving forces. If
correctly designed these ‘ratchet’ devices exhibit unique selectivity for organelles by size and type, speed, and
high throughput capabilities, here realized through a subtle interplay of electrokinetic and dielectrophoretic
forces as well as the microfluidic device geometry. Numerical modeling tools will be developed based on
experimentally observed migration parameters in specific aim (SA) 1. This in silico study is necessary since
ratchet devices often follow ‘non-intuitive’ migration schemes and require detailed parameter studies to adapt
them for biological applications. The optimized parameter set obtained from numerical modeling will then be
experimentally validated for wild type (normal) and small as well as enlarged mitochondria generated via gene
knock-out as a model for size-based separation in SA2. Wild type mitochondria as well as acidic organelles will
serve as the model system for type-based separation (SA2). The novel technology will then be scaled-up to build
a device for high throughput fractionation and collection of organelle fractions of different sizes or types,
allowing the investigation of the phenotype of fractionated mitochondria subpopulations and highly pure
organelle isolations with standard characterization methods (SA3). With the successful development of the novel
fractionation technology, this project will provide a unique and pivotal tool for future inquiry into highly pure
organelle fractions to unravel biological disease pathways in which organelle size and type play a critical role.
摘要 - 按大小和类型按大小和类型的细胞器子分类子
细胞内细胞器的大小和功能异质性与多键动态有关
过程,包括融合,裂变,生物分子合成和储存器中的过程,双分子
运输,氧化应激和降解(例如,通过线粒体),衰老和药物治疗
此类过程的体内平衡,对每个细胞器类型的影响都不同,并且可能导致给定类型
在具有不同大小,功能或形态的细胞器子中。
特定类型的类型,当存在时,是因为它们表征他们的第一步
分子组成,这对于解码功能和分子途径的改变至关重要。
但是,最常见的技术无法隔离。
基于大小的细胞器。
容易发生样品损失的过程,仍然患有细胞器共隔离,表现出相似的物理
物体。
因此,质量受到限制,由于缺乏适合基于尺寸的细胞器亚群的技术
在功能上不同的细胞器中。
能够按大小和类型分离细胞器的技术,并具有很高的纯度。
新型的,尖端的微流体技术到分级细胞器的基于迁移机制
在非平衡内容物下发生的,需要定制的微环境和量身定制的驱动力。
正确设计的这些设备可以按大小和类型,速度和类型显示独特的选择性。
高吞吐量功能,尽管对电动和介电性的微妙解释,这里实现了
作为微流体设备的几何形状的力。
在特定目标(SA)1中观察到的实验性观察到的迁移参数。在计算机研究中,这是必要的
棘轮设备通常遵循'迁移方案,需要详细的参数研究以适应
它们用于生物学应用。
实验性验证了通过基因产生的野生型(正常)和小的线粒体的实验性验证
作为SA2中尺寸分离的模型,酸性细胞器将会
用作基于模型系统的模型分离(SA2)。
一种用于高级分馏和收集不同尺寸或类型的细胞器分数的设备,
允许研究分离的Mitchondria亚匹配和高度纯的表型
具有标准表征方法的细胞器隔离(SA3)。
分馏技术,该项目将提供一个独特而关键的工具,将来对高度纯净的纯纯纯纯纯纯纯纯纯纯纯纯纯纯纯纯净
细胞器分数可阐明生物疾病途径,其中细胞器大小和类型起着至关重要的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Ros其他文献
Alexandra Ros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Ros', 18)}}的其他基金
High-end MALDI Time of Flight Mass Spectrometer for Bioanalysis
用于生物分析的高端 MALDI 飞行时间质谱仪
- 批准号:
10440788 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别:
A Microfluidic Protein Separation Device Based on Dielectrophoresis
一种基于介电泳的微流控蛋白质分离装置
- 批准号:
8132329 - 财政年份:2010
- 资助金额:
$ 28.36万 - 项目类别:
A Microfluidic Protein Separation Device Based on Dielectrophoresis
一种基于介电泳的微流控蛋白质分离装置
- 批准号:
7944203 - 财政年份:2010
- 资助金额:
$ 28.36万 - 项目类别:
A Microfluidic Protein Separation Device Based on Dielectrophoresis
一种基于介电泳的微流控蛋白质分离装置
- 批准号:
8314038 - 财政年份:2010
- 资助金额:
$ 28.36万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Arginyl-tRNA beyond translation: mechanism and regulation of protein arginylation
超越翻译的精氨酰-tRNA:蛋白质精氨酰化的机制和调控
- 批准号:
10711167 - 财政年份:2023
- 资助金额:
$ 28.36万 - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 28.36万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 28.36万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 28.36万 - 项目类别:
Amnion cell secretome mediated therapy for traumatic brain injury
羊膜细胞分泌组介导的创伤性脑损伤治疗
- 批准号:
10746655 - 财政年份:2023
- 资助金额:
$ 28.36万 - 项目类别: