Systems for Helping Veterans Comprehend Electronic Health Record Notes
帮助退伍军人理解电子健康记录笔记的系统
基本信息
- 批准号:9894743
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAmbulatory Care FacilitiesBackCaringClinicalCognitiveCommunicationCommunitiesCompetenceComprehensionConfusionDevelopmentDictionaryDocumentationEducational MaterialsElectronic Health RecordEnsureEvaluationHealthHealth CommunicationHealth EducatorsHealth PersonnelHealthcareIndividualInformaticsInformation ResourcesIntelligenceInterventionKnowledgeLeadLinkLow incomeMapsMeasurementMeasuresMedicalMedlinePlusMotivationMyocardial InfarctionNatural Language ProcessingOutcomeOutcome StudyPatient CarePatient-Centered CarePatient-Focused OutcomesPatientsPerceptionPhysiciansProviderRandomizedResearchResearch DesignResearch PersonnelResourcesScientistSecureSelf DeterminationSelf ManagementSystemTestingTextTranslatingTrustVeteransVocabularyVulnerable PopulationsWorkbasecare deliverycare outcomescare providerscomorbiditydesignempowermenthealth administrationhealth information technologyhealth knowledgehealth literacyimplementation trialimprovedinnovationliteracyopen sourcepatient engagementpatient portalprototyperecruitservice utilizationskillsstudy characteristicstheoriestoolusability
项目摘要
DESCRIPTION (provided by applicant):
The Veterans Health Administration (VHA) is committed to the sharing of Veteran's health information in its efforts to improve the patient-provider relationship in care delivery. The VHA has demonstrated this commitment with the initiation of MyHealtheVet (MHV) patient portal which also utilizes secure messaging between Veterans and their care teams as a way to improve communication. Clinical notes represent a key piece of patient information that could further enhance this relationship. In January 2013, the VA made Veterans' primary care provider's clinical notes available to their patients through the Blue Button feature within the MHV portal. Patient access to full text clinical notes has the potential to improve patient engagement and care. However, a recent study demonstrated that patients- especially those who are vulnerable (e.g., lower literacy, lower income)-can be perplexed by EHR notes. Inadvertently, this confusion and miscommunication may result in unintended increases in service utilization, and changes in perceptions that may disrupt patient-provider relationships. This proposal seeks to develop an innovative tool which will aid Veterans in the comprehension and effective use of their clinical notes to better their care outcomes. We will develop and evaluate NoteAid, a multi-component, intelligent natural language processing (NLP) system designed to translate medical jargon into consumer oriented concepts and provide "patient-friendly" links to related educational material from trusted resources. We expect that NoteAid will
improve Veterans' comprehension of their EHR notes, which in turn will increase patient autonomy and self-management. No current HSR&D projects are evaluating this new innovation, and operational leaders are seeking guidance on how to further advance sharing of clinical information with Veterans. Our Specific Aims are to: Aim 1: Develop a comprehensive EHR health knowledge resource-NoteKnow. It will link medical concepts (e.g., myocardial infarction) to the corresponding consumer oriented concepts (e.g., heart attack), along with definitions and high-quality educational material. Aim 2: Develop, implement, and assess NoteAid, a system that will decipher EHR notes and link them to NoteKnow. NoteAid will integrate innovative NLP approaches. We will assess the NoteAid system using expert walkthrough, usability testing, and task-driven cognitive evaluation. Aim 3: Evaluate NoteAid in a randomized comparison study. We will recruit 250 Veterans from the Worcester VA outpatient clinic. The Veterans will be randomly assigned to two groups: 1.) use of standard EHR notes; 2.) use of EHR notes with NoteAid support. The Study outcomes will be guided by Self- Determination Theory, including: 1.) perceived autonomy support of NoteAid and, 2.) the effect of NoteAid on Veteran outcomes (e.g., motivation and competence). Our integrated research team will include Veterans, physicians, a health educator, informaticians, a biostatistician, and health literacy and communication scientists. We will employ Veterans as co-investigators throughout the NoteAid study to ensure our focus on the end-user. Veterans will be engaged at multiple levels, including intervention refinement (usability tests) and creation (Veteran generated content). In both Aims 1 and 2, Veterans will drive the excellence of the NoteAid system, maximizing the potential of the system to support user comprehension in Aim 3. NoteAid will be a stand-alone and open-source tool that will be made available to national health IT organizations, healthcare providers and patients at the completion of this study. The potential impact of this system is high.
描述(由申请人提供):
退伍军人健康管理局 (VHA) 致力于分享退伍军人的健康信息,努力改善护理服务中的医患关系。 VHA 通过启动 MyHealtheVet (MHV) 患者门户网站展示了这一承诺,该门户网站还利用退伍军人及其护理团队之间的安全消息传递作为改善沟通的方式。临床记录是患者信息的关键部分,可以进一步增强这种关系。 2013 年 1 月,退伍军人管理局通过 MHV 门户中的蓝色按钮功能向患者提供退伍军人初级保健提供者的临床记录。患者获取全文临床记录有可能提高患者的参与度和护理水平。然而,最近的一项研究表明,患者,尤其是那些弱势群体(例如,识字率较低、收入较低),可能会对电子病历记录感到困惑。无意中,这种混乱和沟通不畅可能会导致服务利用率意外增加,以及可能破坏患者与提供者关系的观念变化。该提案旨在开发一种创新工具,帮助退伍军人理解和有效利用他们的临床记录,以改善他们的护理结果。我们将开发和评估 NoteAid,这是一个多组件、智能自然语言处理 (NLP) 系统,旨在将医学术语翻译成面向消费者的概念,并提供来自可信资源的相关教育材料的“患者友好”链接。我们预计 NoteAid 将
提高退伍军人对其电子病历记录的理解,这反过来又会增强患者的自主权和自我管理能力。目前没有 HSR&D 项目正在评估这项新创新,运营领导者正在寻求有关如何进一步推进与退伍军人共享临床信息的指导。我们的具体目标是: 目标 1:开发全面的 EHR 健康知识资源 - NoteKnow。它将医学概念(例如心肌梗塞)与相应的面向消费者的概念(例如心脏病)以及定义和高质量的教育材料联系起来。目标 2:开发、实施和评估 NoteAid,这是一个可以破译 EHR 笔记并将其链接到 NoteKnow 的系统。 NoteAid 将整合创新的 NLP 方法。我们将使用专家演练、可用性测试和任务驱动的认知评估来评估 NoteAid 系统。目标 3:在随机比较研究中评估 NoteAid。我们将从伍斯特 VA 门诊招募 250 名退伍军人。退伍军人将被随机分配到两组: 1.) 使用标准 EHR 注释; 2.) 在 NoteAid 支持下使用 EHR 笔记。研究结果将以自我决定理论为指导,包括:1.)NoteAid 的感知自主支持,2.)NoteAid 对退伍军人结果(例如动机和能力)的影响。我们的综合研究团队将包括退伍军人、医生、健康教育家、信息学家、生物统计学家以及健康素养和传播科学家。我们将聘请退伍军人作为整个 NoteAid 研究的共同研究者,以确保我们关注最终用户。退伍军人将在多个层面上参与,包括干预细化(可用性测试)和创建(退伍军人生成的内容)。在目标 1 和 2 中,退伍军人将推动 NoteAid 系统的卓越发展,最大限度地发挥系统的潜力,以支持目标 3 中的用户理解。NoteAid 将成为一个独立的开源工具,将向全国提供在本研究完成时,健康 IT 组织、医疗保健提供者和患者。该系统的潜在影响很大。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Latent Parameters without Human Response Patterns: Item Response Theory with Artificial Crowds.
在没有人类反应模式的情况下学习潜在参数:人工人群的项目反应理论。
- DOI:10.18653/v1/d19-1434
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lalor,JohnP;Wu,Hao;Yu,Hong
- 通讯作者:Yu,Hong
Readability Formulas and User Perceptions of Electronic Health Records Difficulty: A Corpus Study.
电子健康记录难度的可读性公式和用户感知:语料库研究。
- DOI:10.2196/jmir.6962
- 发表时间:2017
- 期刊:
- 影响因子:7.4
- 作者:Zheng,Jiaping;Yu,Hong
- 通讯作者:Yu,Hong
Building an Evaluation Scale using Item Response Theory.
- DOI:10.18653/v1/d16-1062
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:Lalor JP;Wu H;Yu H
- 通讯作者:Yu H
Understanding Deep Learning Performance through an Examination of Test Set Difficulty: A Psychometric Case Study.
- DOI:10.18653/v1/d18-1500
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Lalor JP;Wu H;Munkhdalai T;Yu H
- 通讯作者:Yu H
Bidirectional RNN for Medical Event Detection in Electronic Health Records.
- DOI:10.18653/v1/n16-1056
- 发表时间:2016-06
- 期刊:
- 影响因子:0
- 作者:Jagannatha AN;Yu H
- 通讯作者:Yu H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONG YU其他文献
HONG YU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONG YU', 18)}}的其他基金
Social and behavioral determinants of health and Alzheimer’s Disease: Cohort study of the US military veteran population
健康和阿尔茨海默病的社会和行为决定因素:美国退伍军人群体的队列研究
- 批准号:
10591049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10656321 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10428629 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10251336 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10100989 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Resource Curation and Evaluation for EHR Note Comprehension
EHR 笔记理解的资源管理和评估
- 批准号:
9925807 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Resource Curation and Evaluation for EHR Note Comprehension
EHR 笔记理解的资源管理和评估
- 批准号:
9794757 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Systems for Helping Veterans Comprehend Electronic Health Record Notes
帮助退伍军人理解电子健康记录笔记的系统
- 批准号:
9768225 - 财政年份:2015
- 资助金额:
-- - 项目类别:
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
9123554 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
- 批准号:
10759642 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Social Media Signals for reducing Perinatal Death by Suicide
减少围产期自杀死亡的社交媒体信号
- 批准号:
10575210 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
- 批准号:
10424899 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
- 批准号:
10623178 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Self-Administered Acupressure for Veterans with Chronic Back Pain: A Multisite Evaluation of Effectiveness and Implementation
患有慢性背痛的退伍军人的自我穴位按摩:有效性和实施的多站点评估
- 批准号:
10533338 - 财政年份:2022
- 资助金额:
-- - 项目类别: