Molecular Basis of the Tau Aggregation Pathway
Tau 聚集途径的分子基础
基本信息
- 批准号:9895602
- 负责人:
- 金额:$ 52.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlternative SplicingAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAntibodiesAppearanceAutomobile DrivingBindingBiologicalBiophysicsCell modelCell surfaceCellsClinicalComplexCoupledCytoplasmCytoplasmic GranulesDataDepositionDetectionDiseaseElectron MicroscopyElectron Spin Resonance SpectroscopyElectrostaticsExposure toFoundationsGoalsGrainHeparinHumanHydrophobicityImmuneIn VitroInclusion BodiesKineticsKnowledgeLabelLaboratoriesLearningLengthLiquid substanceMicrotubule StabilizationModelingMolecularMolecular ChaperonesMolecular ConformationMolecular ProbesMonoclonal AntibodiesMorphologyMutationNatureNerve DegenerationNeurodegenerative DisordersNeuronsPathologicPathologyPathway interactionsPhasePhysiologic pulsePhysiologicalPopulationPost-Translational Protein ProcessingProtein ConformationProteinsRNARNA-Binding ProteinsResearchResearch PersonnelRestRoleRouteSeedsSiteSodium ChlorideSolventsSpin LabelsStressStructureSulfateSurfaceSystemTauopathiesTestingTransfer RNATranslationsTreatment EfficacyVariantVeinsWorkaggregation pathwaybasebeta pleated sheetconformerdesigngenetic variantguided inquiryheparin proteoglycanin silicoin vivoinduced pluripotent stem cellinnovationknowledge basemRNA Differential Displaysmicroscopic imagingmolecular dynamicsmutantnanometernovelsarkosylself assemblyshape analysissimulationtau Proteinstau aggregationtau conformationtau interactiontau mutationtool
项目摘要
PROJECT SUMMARY
Tau is a microtubule-stabilizing protein that is abundant in neurons. It is a highly soluble, intrinsically disordered
protein (IDP) with little tendency for aggregation under native conditions. However, under several experimental
conditions and in a variety of neurodegenerative disorders including Alzheimer’s disease, Tau can spread from
cell to cell and aggregates as intra-cellular β-sheet fibrilar deposits. Our laboratories have critical new data
concerning the temporal, structural and cell biological details of Tau misfolding and fluid-phase assembly—the
basis of this proposal. Our research team consists of a cell biologist, a physical chemist, and a theoretical
biophysicist. Working together closely in an iterative manner we intend to determine the pathway from normal
Tau to disease-related Tau fibrils. The tools for this analysis include (a) cellular systems capable of addressing
in vivo Tau interactions, and indirectly its conformational state based on a variety of molecular probes;; (b) site-
directed spin labeling, electron paramagnetic resonance (EPR) line shape analysis and pulsed dipolar EPR to
determine conformational signatures of Tau;; and (c) fully atomistic modeling of IDP conformations, their
populations and energetics, and coarse-grained simulation of higher-order assemblies of Tau. The conceptual
flow of the proposal begins with a remarkable observation from the Han lab: When exposed to sub-stoichiometric
amounts of heparin, segments of Tau dramatically extend by a nanometer to solvent-expose the hydrophobic
PHF6(*) segment capable of stacking into neat β-sheets. This observation correlates with the appearance of
fibrils, and thus we refer to this initiating step as “on pathway” seeding. In vivo, Tau is known to populate a vast
conformational landscape controlled by alternative splicing, mutations and post-translational modifications. We
propose that the IDP Tau populates an ensemble of different conformations with different aggregation
propensities, fibril morphologies and interaction partners, depending on the exact Tau variant. However, the
defining and specific conformational signatures within this ensemble are unknown. Determining the
conformational signatures of aggregation-prone Tau variants is our core objective, while a missing puzzle piece
in connecting Tau conformation to cellular interactions is the existence and nature of aggregation intermediates.
In this vein, the Han lab discovered that RNA induces liquid-liquid phase separation of Tau in vitro into protein
droplets held together by weak electrostatic forces. At the in vivo cellular level, the Kosik lab discovered Tau-
tRNA complexes, thereby adding Tau to the growing list of RNA-binding proteins involved in neurodegeneration,
and capable of establishing liquid-liquid phase separation in the cytoplasm. The Tau-tRNA complexes may be a
physiologic or pathological entity—we will obtain clues by determining their loci in neuronal cells. Finally, we
intend to learn whether the conformation of Tau, as modulated by disease mutations or co-factors, influences
the stability and in vivo locality of the Tau-tRNA complexes. Our goal is to discover a detailed route from soluble
Tau to fibrils, from the nanometer to the cellular level, and discover the pathological entities of Tau aggregation.
项目概要
Tau 是一种微管稳定蛋白,在神经元中含量丰富。它是一种高度可溶的、本质上无序的蛋白。
蛋白质(IDP)在天然条件下几乎没有聚集倾向。然而,在几个实验下
在包括阿尔茨海默病在内的各种神经退行性疾病中,Tau 蛋白可以从
我们的实验室拥有重要的新数据。
关于 Tau 错误折叠和液相组装的时间、结构和细胞生物学细节 -
我们的研究团队由一名细胞生物学家、一名物理化学家和一名理论家组成。
生物物理学家以迭代的方式密切合作,我们打算确定正常的途径。
Tau 到疾病相关的 Tau 原纤维。用于此分析的工具包括 (a) 能够处理的细胞系统。
体内 Tau 相互作用,以及基于各种分子探针的间接构象状态;(b) 位点-
定向自旋标记、电子顺磁共振 (EPR) 线形分析和脉冲偶极 EPR
确定 Tau 的构象特征;以及 (c) IDP 构象的完全原子建模及其
种群和能量学,以及 Tau 高阶组装的粗粒度模拟。
该提案的流程始于汉实验室的一个显着观察:当暴露于亚化学计量时
在一定量的肝素作用下,Tau 片段显着延伸一纳米,从而使疏水性暴露在溶剂中
PHF6(*) 片段能够堆积成整齐的 β-折叠,这一观察结果与 的外观相关。
纤维,因此我们将这一起始步骤称为“途径”播种 在体内,Tau 蛋白会大量繁殖。
由选择性剪接、突变和翻译后修饰控制的构象景观。
提出 IDP Tau 填充具有不同聚合的不同构象的集合
倾向、原纤维形态和相互作用伙伴,具体取决于 Tau 变体。
该集合中的定义和具体构象特征是未知的。
易于聚集的 Tau 变体的构象特征是我们的核心目标,同时也是一个缺失的拼图。
将 Tau 构象与细胞相互作用联系起来的是聚集中间体的存在和性质。
在这方面,Han 实验室发现 RNA 在体外诱导 Tau 液-液相分离成蛋白质。
Kosik 实验室在体内细胞水平上发现了 Tau-,通过微弱的静电力将液滴结合在一起。
tRNA 复合物,从而将 Tau 添加到参与神经退行性变的不断增长的 RNA 结合蛋白列表中,
并能够在细胞质中建立液-液相分离。 Tau-tRNA 复合物可以是 a.
生理或病理实体——我们将通过确定它们在神经元细胞中的位点来获得线索。
打算了解受疾病突变或辅助因子调节的 Tau 构象是否会影响
Tau-tRNA 复合物的稳定性和体内定位 我们的目标是发现可溶性的详细途径。
Tau到原纤维,从纳米到细胞水平,发现Tau聚集的病理实体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Songi Han其他文献
Songi Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Songi Han', 18)}}的其他基金
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
- 批准号:
10406266 - 财政年份:2020
- 资助金额:
$ 52.95万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature’s Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10651833 - 财政年份:2020
- 资助金额:
$ 52.95万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature’s Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10403510 - 财政年份:2020
- 资助金额:
$ 52.95万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature's Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10205773 - 财政年份:2020
- 资助金额:
$ 52.95万 - 项目类别:
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
- 批准号:
10170389 - 财政年份:2020
- 资助金额:
$ 52.95万 - 项目类别:
Multifrequency microwave powered DNP instrument for MAS NMR
用于 MAS NMR 的多频微波供电 DNP 仪器
- 批准号:
9166814 - 财政年份:2016
- 资助金额:
$ 52.95万 - 项目类别:
The Role of Lipid Membrane and Hydration on the Oligomerization and Function of PR and A2A
脂膜和水合对 PR 和 A2A 寡聚化和功能的作用
- 批准号:
9276861 - 财政年份:2015
- 资助金额:
$ 52.95万 - 项目类别:
Role of lipid membrane and hydration on the oligomerization and function of PR and A2A
脂膜和水合对 PR 和 A2A 寡聚化和功能的作用
- 批准号:
8966154 - 财政年份:2015
- 资助金额:
$ 52.95万 - 项目类别:
相似国自然基金
TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
- 批准号:82370111
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
- 批准号:82304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
- 批准号:82303784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
- 批准号:82373527
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
拟南芥剪接因子SR蛋白通过选择性剪接调控获得性耐热的机理研究
- 批准号:32300247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multiomics data integration methods to discover putative causal variants, genes and patient heterogeneity for Alzheimers disease
多组学数据整合方法发现阿尔茨海默病的假定因果变异、基因和患者异质性
- 批准号:
10587524 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
BIN1-interactome in Alzheimer's disease pathophysiology
BIN1-相互作用组在阿尔茨海默病病理生理学中的作用
- 批准号:
10677190 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Default mode network dysfunction in Down Syndrome
唐氏综合症的默认模式网络功能障碍
- 批准号:
10635582 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Isoform-dependent effects of tau phosphorylation in Alzheimer's disease
阿尔茨海默病中 tau 磷酸化的异构体依赖性效应
- 批准号:
10745286 - 财政年份:2022
- 资助金额:
$ 52.95万 - 项目类别:
Development of a brain penetrating single-chain antibody selectively targeting three repeat tau protein as a new treatment for frontotemporal dementia
开发选择性靶向三个重复 tau 蛋白的脑穿透单链抗体作为额颞叶痴呆的新治疗方法
- 批准号:
10383261 - 财政年份:2022
- 资助金额:
$ 52.95万 - 项目类别: