Role of Ossifying Chondrocytes in Regeneration of the Adult Jaw Skeleton
骨化软骨细胞在成人颌骨再生中的作用
基本信息
- 批准号:8620576
- 负责人:
- 金额:$ 24.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAdoptedAdultAmphibiaAmputationApoptosisBody partBone DevelopmentBone RegenerationBone callusCartilageCellsChondrocytesClinicDataDefectDevelopmentEmployee StrikesFishesFractureFutureGene ExpressionGenesGeneticGenetic ModelsGenetic TechniquesGoalsHealedHealthHumanHybrid CellsHybridsHypertrophyImmature BoneInjuryInvadedJawLeadLearningLesionLimb structureLizardsMammalsMandibleMature BoneMesenchymalModelingMolecularMolecular ProfilingNatural regenerationOsteoblastsOsteocytesPathway interactionsPatientsPeriosteumPhysiologicalPopulationPropertyRelative (related person)RoleSignal TransductionSkeletal systemSkeletonSourceTailTechniquesTestingTransgenic OrganismsVertebratesZebrafishappendagebasebonecell behaviorhealingimprovedinjuredinsightmutantnovelnovel strategiesosteoblast differentiationosteogenicosteopontinprogenitorprogramspublic health relevanceregenerativerepairedresponse to injuryrestorationskeletalskeletal injuryskeletal regenerationtool
项目摘要
Project Summary/Abstract
A major goal in human health is to improve the ability of large fractures and skeletal wounds to heal. In contrast
to mammals, many amphibia and lizards do have a remarkable ability to reform entire limb and/or tail
skeletons, yet the relative lack of genetic tools in these species have limited progress towards the underlying
cellular and molecular mechanisms. Here, we present a new model of skeletal regeneration in the genetically
tractable zebrafish. In a matter of just a few weeks, adult zebrafish can regenerate nearly two-thirds of their
lower jawbone, and they appear to do so through an unusual chondrocyte population that directly produces
woven bone. As potentially similar cells have been observed during mammalian fracture repair, a better
understanding of these cells during skeletal repair, as well as how they contribute to more extensive
regeneration in lower vertebrates, will aid in developing novel therapies for improving bone repair in patients.
In the first aim, purification and expression profiling of regenerating chondrocytes, which express markers of
both chondrocytes and osteoblasts, will determine the extent to which these cells are hybrid chondrocytes/
osteoblasts. Genes specifically upregulated in early regenerating chondrocytes will also indicate potential
pathways that induce these cells in response to injury. Next, we use newly developed Cre/Lox transgenic lines
to test the origins and long-term fate of regenerating chondrocytes. In particular, we test that the periosteum is
a major source of regenerating chondrocytes, with these directly converting into the osteoblasts that produce
woven bone. Using a novel intersectional transgenic strategy to specifically ablate regenerating chondrocytes,
we then test that these cells are required for the large-scale regeneration of bone in the zebrafish jaw.
During the development of endochondral bone, the majority of chondrocytes undergo hypertrophy and
apoptosis, with bony matrix being produced by invading osteoblasts. Quite differently during regeneration, our
preliminary data suggest that many chondrocytes directly differentiate into osteoblasts. Using an adult viable
ihha mutant and a transgenic strategy to inhibit Hh signaling only in regenerating chondrocytes, we test in the
second aim that persistently high Ihh signaling is essential for regenerating chondrocytes to differentiate into
osteoblasts. The completion of these Aims will test a model that the ability of regenerating chondrocytes to
directly make bone allows a rapid restoration of rigidity in a damaged body part, with the initial woven bone
later being remodeled into mature bone. In the long-term, we plan to use lessons taken from this new zebrafish
model to devise strategies to augment the inherent ability of the skeleton to repair critical size defects.
!
项目概要/摘要
人类健康的一个主要目标是提高大面积骨折和骨骼伤口的愈合能力。相比之下
对于哺乳动物来说,许多两栖动物和蜥蜴确实具有改造整个肢体和/或尾巴的非凡能力
骨骼,但这些物种相对缺乏遗传工具,限制了潜在的进展
细胞和分子机制。在这里,我们提出了一种新的遗传性骨骼再生模型
易驯服的斑马鱼。在短短几周内,成年斑马鱼就可以再生近三分之二的身体
下颌骨,它们似乎是通过一种不寻常的软骨细胞群来做到这一点的,这种软骨细胞群直接产生
编织骨。由于在哺乳动物骨折修复过程中观察到了潜在的相似细胞,因此更好的方法
了解这些细胞在骨骼修复过程中的作用,以及它们如何促进更广泛的修复
低等脊椎动物的再生将有助于开发改善患者骨修复的新疗法。
第一个目标是再生软骨细胞的纯化和表达谱,这些细胞表达以下标记物:
软骨细胞和成骨细胞将决定这些细胞是混合软骨细胞/的程度
成骨细胞。在早期再生软骨细胞中特异性上调的基因也将表明潜在的潜力
诱导这些细胞对损伤作出反应的途径。接下来,我们使用新开发的Cre/Lox转基因品系
测试再生软骨细胞的起源和长期命运。特别是,我们测试骨膜是
再生软骨细胞的主要来源,这些软骨细胞直接转化为成骨细胞,产生
编织骨。使用一种新颖的交叉转基因策略来特异性消融再生软骨细胞,
然后我们测试这些细胞是否是斑马鱼颌骨大规模再生所必需的。
在软骨内骨的发育过程中,大多数软骨细胞发生肥大和
细胞凋亡,入侵的成骨细胞产生骨基质。在再生过程中,我们的
初步数据表明,许多软骨细胞直接分化为成骨细胞。使用成人可行的
ihha 突变体和仅在再生软骨细胞中抑制 Hh 信号传导的转基因策略,我们在
第二个目标是持续高 Ihh 信号对于软骨细胞再生分化为至关重要
成骨细胞。这些目标的完成将测试软骨细胞再生能力的模型
直接制造骨骼可以快速恢复受损身体部位的刚性,最初的编织骨骼
后来被重塑为成熟的骨骼。从长远来看,我们计划借鉴这种新斑马鱼的经验教训
模型来设计策略来增强骨骼修复关键尺寸缺陷的固有能力。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gage D Crump其他文献
Gage D Crump的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gage D Crump', 18)}}的其他基金
Modular control of jaw tendon specification by the Nr5a2 orphan nuclear receptor
Nr5a2 孤儿核受体对颌肌腱规范的模块化控制
- 批准号:
10227394 - 财政年份:2020
- 资助金额:
$ 24.69万 - 项目类别:
Modular control of jaw tendon specification by the Nr5a2 orphan nuclear receptor
Nr5a2 孤儿核受体对颌肌腱规范的模块化控制
- 批准号:
10115696 - 财政年份:2020
- 资助金额:
$ 24.69万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
9460833 - 财政年份:2017
- 资助金额:
$ 24.69万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10783456 - 财政年份:2017
- 资助金额:
$ 24.69万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10840025 - 财政年份:2017
- 资助金额:
$ 24.69万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10641883 - 财政年份:2017
- 资助金额:
$ 24.69万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10426306 - 财政年份:2017
- 资助金额:
$ 24.69万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10200763 - 财政年份:2017
- 资助金额:
$ 24.69万 - 项目类别:
Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
- 批准号:
10493274 - 财政年份:2016
- 资助金额:
$ 24.69万 - 项目类别:
Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
- 批准号:
10365746 - 财政年份:2016
- 资助金额:
$ 24.69万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 24.69万 - 项目类别:
Defining The Role of Failed-Repair Proximal Tubule Cells in AdvancedRenal Disease in African Americans
确定修复失败的近端小管细胞在非裔美国人晚期肾病中的作用
- 批准号:
10740665 - 财政年份:2023
- 资助金额:
$ 24.69万 - 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
- 批准号:
10750508 - 财政年份:2023
- 资助金额:
$ 24.69万 - 项目类别:
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
- 批准号:
10642313 - 财政年份:2023
- 资助金额:
$ 24.69万 - 项目类别:
NASH-associated macrophages: regulation and role in disease pathogenesis
NASH 相关巨噬细胞:疾病发病机制中的调节和作用
- 批准号:
10675885 - 财政年份:2023
- 资助金额:
$ 24.69万 - 项目类别: