Development of a Prognostic Compound Immunoscore for Head and Neck Cancer
头颈癌预后复合免疫评分的开发
基本信息
- 批准号:9766266
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingCancer VaccinesCellsClinicClinical TrialsComplementDataData SetDevelopmentDimensionsDiseaseEngineeringExclusionExhibitsExpression ProfilingGene ExpressionGenesGleanGoalsGroup IdentificationsHead and Neck CancerHead and Neck Squamous Cell CarcinomaImmuneImmunityImmunogenomicsImmunohistochemistryInfiltrationInstitutionInterferon Type IInterferon Type IIInterferonsKnowledgeLearningLymphocyte SubsetMachine LearningMalignant NeoplasmsMethodologyMethodsModelingMutateMutationNational Institute of Dental and Craniofacial ResearchOncogenicOutcomePathologistPathway interactionsPatientsPlayPopulationReceptor InhibitionReceptor SignalingRoleSelection for TreatmentsSignal TransductionSquamous cell carcinomaStaging SystemStainsStatistical Data InterpretationT-Lymphocyte SubsetsTechniquesTimeTreatment ProtocolsTumor-Infiltrating LymphocytesTumor-infiltrating immune cellsVariantWeightbasebiomarker panelcancer biomarkerscancer genomicscheckpoint receptorschemoradiationcombinatorialgenome-widegenome-wide analysisimmune checkpointimmunogenicimmunogenicityinhibitor/antagonistinter-institutionalnoveloptimal treatmentspatient stratificationpreventprognosticprognostic performancepublic health relevancereceptor expressionrecruitresponsestatisticstooltranscriptome sequencingtumor
项目摘要
PROJECT SUMMARY
Knowledge from the recent clinical trials suggests that over 80% of head and neck cancer (HNC) are
hypo-immunogenic cold tumors and non-responsive to immune checkpoint receptors (ICR) blockade. With the
emerging combinatorial strategies for cold cancer, precise identification of this group of tumors is essential for
the selection of optimal treatment protocols. However, there is no consistent algorithm available to assess the
global immune profile of HNC. Most of the current immunoscore methods are based on immunohistochemical
(IHC) staining of a limited panel of biomarkers, which prevents a precise annotation of the landscape of tumor-
infiltrating lymphocytes (TIL). The IHC method is technically sensitive, and may present inter-institutional and
inter-pathologists variations. Moreover, the current immunoscore only emphasizes on a few T-cell subsets, and
does not integrate cancer genomic features that modulate tumor response to immune killing. In fact, strong
evidence suggests that the type I interferon (IFN-I) pathway plays a fundamental role in HNC response to
effector immune cells. Thus, leveraging global TIL profiles and cancer genomic features offers an
unprecedented opportunity to classify HNC based on its immunogenicity. The current robust methods for
cellular deconvolution are sensitive to outliers, which are frequently observed in the whole tumor RNA-Seq
datasets. Our recent studies show that a novel machine learning tool Fast And Robust DEconcolution of
Expression Profiles (FARDEEP), which adaptively detects and removes outliers, exhibits superior accuracy in
immune cell deconvolution. In precise alignment with the FOA, the overarching hypothesis of this project is that
a compound immunoscore integrating FARDEEP-assisted TIL deconvolution and cancer genomics can
effectively identify cold HNC. To achieve this goal, our two immediate next steps are: **(1) We will develop a
robust model-free approach to identify TIL-driving oncogenic pathways; **(2) We will construct a compound
immunoscore integrating cancer genomic features and TIL profiles to identify cold HNC. These studies will
develop a novel “statistical methodology appropriate for analyzing genome-wide data” and provide “statistical
analysis of existing genome-wide data” for an NIDCR priority disease. This project will refine a robust and
novel immune-cell deconvolution machine learning tool and characterize central oncogenic pathways that shift
the TIL landscape. The new immunogenomics algorithms will streamline the immunoscoring method to
effectively stratify HNC and contribute to the precision selection of combinatorial treatments.
项目概要
最近的临床试验表明,超过 80% 的头颈癌 (HNC) 是由
低免疫原性冷肿瘤和对免疫检查点受体(ICR)阻断无反应。
新兴的冷癌组合策略,精确识别这组肿瘤对于治疗癌症至关重要
然而,没有一致的算法可用于评估最佳治疗方案。
HNC 的整体免疫谱目前大多数免疫评分方法都是基于免疫组织化学。
(IHC)对有限的一组生物标志物进行染色,这阻碍了对肿瘤景观的精确注释
IHC 方法在技术上很敏感,可能会出现机构间和浸润性淋巴细胞。
此外,目前的免疫评分仅强调少数 T 细胞亚群,并且
事实上,没有整合调节肿瘤对免疫杀伤反应的癌症基因组特征。
有证据表明,I 型干扰素 (IFN-I) 通路在 HNC 应答中发挥着重要作用
因此,利用全局 TIL 谱和癌症基因组特征提供了一种方法。
根据 HNC 的免疫原性对 HNC 进行分类是前所未有的机会。
细胞反卷积对异常值敏感,这些异常值在整个肿瘤 RNA-Seq 中经常观察到
我们最近的研究表明,一种新颖的机器学习工具可以快速且鲁棒地解构。
表达谱 (FARDEEP) 可自适应检测和去除异常值,在以下方面表现出卓越的准确性:
与 FOA 精确一致,该项目的总体假设是:
整合 FARDEEP 辅助 TIL 反卷积和癌症基因组学的复合免疫评分可以
有效识别感冒 HNC 为实现这一目标,我们接下来的两个步骤是: **(1) 我们将开发一个
**(2) 我们将建造一个大院
这些研究将整合癌症基因组特征和 TIL 谱的免疫评分来识别冷 HNC。
开发一种新颖的“适合分析全基因组数据的统计方法”并提供“统计
对 NIDCR 优先疾病的现有全基因组数据进行分析” 该项目将完善一个强大而稳健的方法。
新型免疫细胞反卷积机器学习工具,并描述了转变的中心致癌途径
新的免疫基因组学算法将简化免疫评分方法
有效地对 HNC 进行分层,有助于组合治疗的精确选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Leo Lei其他文献
IL-1α Mediated Suppressive Myeloid Function in Head and Neck Cancer
IL-1α 介导的头颈癌抑制性骨髓功能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hulya F. Taner;Wang Gong;Kohei Okuyama;Luke Proses;Wanqing Cheng;Jung Kuczura;Sashider Rajesh;Yuying Xie;Yu Leo Lei - 通讯作者:
Yu Leo Lei
BATF2 suppresses cancer initiation by promoting γδ T-cell-mediated immunity
BATF2 通过促进 γδ T 细胞介导的免疫来抑制癌症发生
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wang Gong;Hulya Taner;Yuesong Wu;Wanqing Cheng;Kohei Okuyama;Zaiye Li;Shadmehr Demehri;Felipe Nor;Deepak Nagrath;Steven B Chinn;Christopher R Donnelly;James J Moon;Yuying Xie;Yu Leo Lei - 通讯作者:
Yu Leo Lei
Resolving an Immune Tolerogenic Niche at the Earliest Phase of Oral Cancer Initiation
在口腔癌发生的最早阶段解决免疫耐受性生态位
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hulya Taner;Wang Gong;Luke Broses;Kohei Okuyama;Wanqing Cheng;Jung Kuczura;Sashider Rajesh;Yee Sun Tan;Shadmehr Demehri;Jianwen Que;Yuying Xie;Yu Leo Lei - 通讯作者:
Yu Leo Lei
Sox2-driven Epithelial Transformation Promotes IL1-mediated Peripheral Immune Tolerance
Sox2 驱动的上皮转化促进 IL1 介导的外周免疫耐受
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hulya F. Taner;Wang Gong;Kohei Okuyama;Luke Broses;Wanqing Cheng;Jung Kuczura;Sashider Rajesh;Yuying Xie;Yu Leo Lei - 通讯作者:
Yu Leo Lei
Yu Leo Lei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Leo Lei', 18)}}的其他基金
Engineered Nano-formulations for STING Activation
用于 STING 激活的工程纳米制剂
- 批准号:
10539415 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Engineered Nano-formulations for STING Activation
用于 STING 激活的工程纳米制剂
- 批准号:
10661091 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
New Engineering Strategy for Harnessing Immune System against Head and Neck Cancer
利用免疫系统对抗头颈癌的新工程策略
- 批准号:
10316349 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
New Engineering Strategy for Harnessing Immune System against Head and Neck Cancer
利用免疫系统对抗头颈癌的新工程策略
- 批准号:
10615115 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
New Engineering Strategy for Harnessing Immune System against Head and Neck Cancer
利用免疫系统对抗头颈癌的新工程策略
- 批准号:
10434134 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Restoring the Immunogenicity of Head and Neck Cancer
恢复头颈癌的免疫原性
- 批准号:
10732281 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Develop a Therapeutic Nano-vaccine against Head and Neck Cancer
开发针对头颈癌的治疗性纳米疫苗
- 批准号:
10372999 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Develop a Therapeutic Nano-vaccine against Head and Neck Cancer
开发针对头颈癌的治疗性纳米疫苗
- 批准号:
9895433 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Autophagy-promoting NLRX1-TUFM complex and cancer cell resistance to cetuximab
促进自噬的NLRX1-TUFM复合物和癌细胞对西妥昔单抗的耐药性
- 批准号:
8923237 - 财政年份:2014
- 资助金额:
$ 16.2万 - 项目类别:
Autophagy-promoting NLRX1-TUFM complex and cancer cell resistance to cetuximab
促进自噬的NLRX1-TUFM复合物和癌细胞对西妥昔单抗的耐药性
- 批准号:
9464986 - 财政年份:2014
- 资助金额:
$ 16.2万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Genome-wide mapping and characterization of exitrons in human cancer
人类癌症中激子的全基因组图谱和表征
- 批准号:
10362364 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Genome-wide mapping and characterization of exitrons in human cancer
人类癌症中激子的全基因组图谱和表征
- 批准号:
10631029 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
T cell mechanisms of immunotherapy response in pancreatic ductal adenocarcinoma
胰腺导管腺癌免疫治疗反应的 T 细胞机制
- 批准号:
10324557 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10415985 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10159730 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别: