Mechanistic Machine Learning

机械机器学习

基本信息

  • 批准号:
    9767278
  • 负责人:
  • 金额:
    $ 66.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-20 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT The goal of this project is to combine empirical data with mechanistic physiologic knowledge to produce personalized, quantitative predictions that can lead to improved treatments. In normal practice, physicians reason by analogy from generic physiologic principles, but the technology exists to exploit even imperfect physiologic models make treatment personalized and quantitatively grounded in physiology, and to improve learning from empirical data. We will apply data assimilation (DA), mechanistic mathematical modeling, machine learning, and control theory, which have revolutionized space travel, weather forecasting, transportation and flight, and manufacturing. Data assimilation and control theory have seen very limited use in medicine, usually applied in data-rich circumstances like continuous glucose monitoring or packemakers. Our previous work demonstrated use of data assimilation with glucose-insulin models to predict glucose in the outpatient type 2 diabetes setting. We will extend data assimilation and control theory using, for example, a constrained ensemble Kalman filter and an offline Markov Chain Monte Carlo algorithm, to better handle sparse, short training sets on rapidly changing patients, and we will apply it in the setting of glucose management in the intensive care unit (ICU). Moreover, we will develop DA for phenotyping applications by exploiting the parameter estimation capabilities of DA. Data assimilation can be used to estimate measureable and unmeasureable physiologic states and parameters, and we will use these estimates to create higher definition phenotypes. While we are focusing on glucose management in the ICU, we will develop methods that are likely to generalize, beginning the effort to develop DA in the context of healthcare more broadly. The work we propose is a necessary step toward being able to use mechanism-driven DA to test, validate and optimize personalized short-term treatment strategies, long-term health forecasts, and mechanistic physiologic understanding. We will carry out the following aims: AIM 1—forecast—extend the DA methodology to allow forecasting, personalization, model evaluation, and model selection in the ICU context, relating treatment input to physiologic outcome; AIM 2—phenotype—extend the DA framework to state and parameter estimation to allow for mechanism-based phenotyping, careful uncertainty quantification, and inference of difficult or impossible-to-measure physiology; AIM 3—control—extend the DA to include a controller that begins with desired clinical outcomes, e.g., glucose range, and estimates the inputs, e.g., insulin or nutrition, required to achieve the outcomes.
项目概要/摘要 该项目的目标是将经验数据与机械生理知识相结合,产生 在正常实践中,医生可以进行个性化的定量预测,从而改善治疗。 从一般生理原理进行类比推理,但技术的存在可以利用甚至不完美的 生理模型使治疗个性化并以生理学为基础定量化,并改善 我们将应用数据同化(DA)、机械数学建模、 机器学习和控制理论彻底改变了太空旅行、天气预报、 运输和飞行,以及数据同化和控制理论的应用非常有限。 在医学中,通常应用于数据丰富的环境,例如连续血糖监测或包装制造商。 我们之前的工作证明了使用葡萄糖-胰岛素模型的数据同化来预测血糖 我们将使用例如数据同化和控制理论来扩展门诊 2 型糖尿病设置。 约束集成卡尔曼滤波器和离线马尔可夫链蒙特卡罗算法,以更好地处理 针对快速变化的患者的稀疏、简短的训练集,我们将其应用于葡萄糖的设置 此外,我们将开发用于表型分析应用的 DA。 利用 DA 的参数估计功能可用于估计可测量值。 以及无法测量的生理状态和参数,我们将使用这些估计来创建更高的 当我们专注于 ICU 的血糖管理时,我们将开发一些方法 可能会推广,开始在更广泛的医疗保健背景下开发 DA 工作。 我们建议这是能够使用机制驱动的 DA 来测试、验证和优化的必要步骤 个性化短期治疗策略、长期健康预测和机械生理学 理解。 我们将实现以下目标: AIM 1——预测——扩展 DA 方法以进行预测, ICU 环境中的个性化、模型评估和模型选择,将治疗输入与 生理结果;AIM 2—表型—将 DA 框架扩展到状态和参数估计 允许基于机制的表型分析、仔细的不确定性量化以及难度或 无法测量的生理学;AIM 3—控制—将 DA 扩展为包括以下开头的控制器: 期望的临床结果,例如血糖范围,并估计所需的输入,例如胰岛素或营养 取得成果。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical Decision Support for Traumatic Brain Injury: Identifying a Framework for Practical Model-Based Intracranial Pressure Estimation at Multihour Timescales.
  • DOI:
    10.2196/23215
  • 发表时间:
    2021-03-22
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Stroh JN;Bennett TD;Kheyfets V;Albers D
  • 通讯作者:
    Albers D
Reduced model for female endocrine dynamics: Validation and functional variations.
女性内分泌动力学的简化模型:验证和功能变化。
  • DOI:
    10.1016/j.mbs.2023.108979
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Graham,EricaJ;Elhadad,Noémie;Albers,David
  • 通讯作者:
    Albers,David
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David J. Albers其他文献

Scaling Up HCI Research: from Clinical Trials to Deployment in the Wild.
扩大人机交互研究:从临床试验到野外部署。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lena Mamykina;Arlene M. Smaldone;Suzanne R. Bakken;Noémie Elhadad;Elliot G. Mitchell;Pooja M. Desai;Matthew E. Levine;Jonathan N. Tobin;Andrea Cassells;Patricia G. Davidson;David J. Albers;G. Hripcsak
  • 通讯作者:
    G. Hripcsak
Probability of Local Bifurcation Type from a Fixed Point: A Random Matrix Perspective
定点局部分叉类型的概率:随机矩阵的角度
  • DOI:
    10.1007/s10955-006-9232-6
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    David J. Albers;J. Sprott
  • 通讯作者:
    J. Sprott

David J. Albers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David J. Albers', 18)}}的其他基金

Mechanistic Machine Learning
机械机器学习
  • 批准号:
    9427058
  • 财政年份:
    2017
  • 资助金额:
    $ 66.06万
  • 项目类别:

相似海外基金

Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
  • 批准号:
    10633905
  • 财政年份:
    2023
  • 资助金额:
    $ 66.06万
  • 项目类别:
Developing and evaluating new measures of family availability to provide care to people with dementia
制定和评估家庭可用性的新衡量标准,为痴呆症患者提供护理
  • 批准号:
    10728725
  • 财政年份:
    2023
  • 资助金额:
    $ 66.06万
  • 项目类别:
Stanford PRIHSM: PReventing Inequities in Hemorrhage-related Severe Maternal Morbidity
斯坦福大学 PRIHSM:预防与出血相关的严重孕产妇发病率的不平等
  • 批准号:
    10748636
  • 财政年份:
    2023
  • 资助金额:
    $ 66.06万
  • 项目类别:
Impact of Autonomic Dysfunction on Multi-Organ Dysfunction following Severe TBI: The AUTO-BOOST Study
严重 TBI 后自主神经功能障碍对多器官功能障碍的影响:AUTO-BOOST 研究
  • 批准号:
    10607731
  • 财政年份:
    2023
  • 资助金额:
    $ 66.06万
  • 项目类别:
Driving Rehabilitation and Innovation for Evaluating Risk in Post-Intensive Care Unit Survivors (DRIVE-PICS)
推动康复和创新以评估重症监护室幸存者的风险 (DRIVE-PICS)
  • 批准号:
    10574692
  • 财政年份:
    2023
  • 资助金额:
    $ 66.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了