Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
基本信息
- 批准号:9764151
- 负责人:
- 金额:$ 46.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAnatomyBig DataBiopsyCancer EtiologyCarcinomaCategoriesCessation of lifeClinicalColonoscopyColorectalColorectal CancerComputed Tomographic ColonographyComputer SimulationDatabasesDecision Support SystemsDetectionDevelopmentDiagnosisDiagnosticEarly DiagnosisEvaluationGoalsGuidelinesHumanImageLesionLocationMachine LearningMedical ImagingMethodsMolecularMulti-Institutional Clinical TrialOpticsPathway interactionsPerformancePhenotypePreventionProblem SolvingProcessPsychological TransferReaderRetrievalSafetySchemeSensitivity and SpecificityShapesSpecificitySystemTestingTextureTimeTrainingUnited Statesadenomabasecancer diagnosiscolorectal cancer preventioncomputer aided detectionconvolutional neural networkcostdeep learningimprovedinnovationminimally invasivemortalityradiologistradiomicsscreeningsuccess
项目摘要
Project Summary/Abstract
Computer-aided detection (CADe) has been shown to increase readers’ sensitivity and reduce inter-observer
variance in detecting abnormalities in medical images. However, they prompt relatively large numbers of false
positives (FPs) that readers find tedious to review and, during this process, the readers can incorrectly dismiss
true lesions prompted correctly to them by CADe systems. Thus, there is a demand for an advanced decision
support system that would provide not only high detection sensitivity, but also high specificity while being able
to explain why a specific location was prompted as a lesion. In this project, we propose to improve the
detection specificity of CADe by deep convolutional neural networks (DCNNs) that can analyze the extrinsic
radiomic phenotype, such as the context of local anatomy, of target lesions, whereas current CADe systems
consider only the intrinsic radiomic phenotype, such as the shape and texture of detected lesions. Further, we
can use DCNNs to provide an explanation of why a specific location was prompted by using anatomically
meaningful object categories with similar-image retrieval of past diagnosed cases. In this project, we will focus
on computed tomographic colonography (CTC), which is a minimally invasive screening method for early
detection of colorectal lesions to prevent colorectal cancer (CRC), which is the second leading cause of cancer
deaths in the United States. Historically, however, only adenomas were believed to be precursors of CRC.
Recent studies have revealed a molecular pathway where also serrated lesions can develop into CRC. Recent
studies have indicated that CTC can detect serrated lesions accurately based upon the phenomenon called
contrast coating. Thus, the goal of this project is to develop a deep radiomic decision support (DeepDES)
system that leverages deep learning for providing high sensitivity and specificity in the detection of colorectal
lesions, in particular, serrated lesions, and for providing diagnostic information that explains why a specific
location was prompted as a lesion to assist readers in assessing detected lesions correctly. To achieve the
goal, we will explore the following specific aims: (1) Develop a radiomic deep-learning (RAID) scheme for the
detection of colorectal lesions, (2) develop a DeepDES system for diagnosis of detected lesions, and (3)
evaluate the clinical benefit of DeepDES system. Successful development of the proposed DeepDES system
will provide an advanced decision support that addresses the current concerns about CADe by yielding both
high detection sensitivity and high specificity while being able to explain why a specific location was prompted
as a target lesion. Broad adoption and use of the DeepDES system will advance the prevention and early
diagnosis of cancer, and thus will ultimately reduce mortality from colorectal cancer in the United States.
项目摘要/摘要
计算机辅助检测(CADE)已显示可提高读者的敏感性并降低观察者间
检测医学图像异常的差异。但是,它们促使相对较大的虚假
读者认为繁琐的审查,在此过程中,读者可能会错误地驳回
CADE系统正确地向它们提示了真实病变。那是对高级决定的需求
支持系统不仅可以提供高检测敏感性,而且还提供高特异性的同时也可以
解释为什么要引发特定位置作为病变。在这个项目中,我们建议改善
通过深卷积神经网络(DCNN)对CADE的检测特异性,可以分析外部
靶向病变的放射素表型,例如局部解剖结构的背景,而当前的CADE系统
仅考虑固有的放射素表型,例如检测到的病变的形状和质地。此外,我们
可以使用dcnns提供解释为什么通过解剖学上提示特定位置的解释
有意义的对象类别,具有相似的图像检索过去被诊断的病例。在这个项目中,我们将集中精力
在计算机断层扫描(CTC)上,这是早期侵入性筛查方法
检测结直肠癌的结直肠癌(CRC),这是癌症的第二大原因
在美国死亡。然而,从历史上看,只有腺瘤被认为是CRC的前体。
最近的研究揭示了一种分子途径,其中也可以在CRC中发展为锯齿状病变。最近的
研究表明,CTC可以根据所谓的现象准确检测锯齿状病变
对比涂层。这是该项目的目的是建立深层的放射线决策支持(DEEPDES)
利用深度学习的系统,以在检测结直肠癌的检测中提供高灵敏度和特异性
尤其是病变,特别是锯齿状的病变,以及提供诊断信息,解释了为什么特定的
提示位置作为病变,以帮助读者正确评估检测到的病变。实现
目标,我们将探讨以下特定目的:(1)为该人开发放射学深度学习(RAID)方案
检测结直肠病变,(2)开发用于检测病变诊断的DeepDES系统,(3)
评估DeepDES系统的临床益处。拟议的DeepDES系统的成功开发
将提供高级决策支持,以解决当前对CADE的担忧
高检测灵敏度和高特异性,同时可以解释为什么提示特定位置
作为目标病变。大广泛采用和使用DeepDES系统将提高预防和早期
诊断癌症,因此最终将降低美国大肠癌的死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROYUKI YOSHIDA其他文献
HIROYUKI YOSHIDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROYUKI YOSHIDA', 18)}}的其他基金
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
- 批准号:
10644030 - 财政年份:2022
- 资助金额:
$ 46.17万 - 项目类别:
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
- 批准号:
10503417 - 财政年份:2022
- 资助金额:
$ 46.17万 - 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
- 批准号:
10308462 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
- 批准号:
9288493 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
- 批准号:
9566185 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
- 批准号:
10054168 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
- 批准号:
8893927 - 财政年份:2014
- 资助金额:
$ 46.17万 - 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
- 批准号:
8757781 - 财政年份:2014
- 资助金额:
$ 46.17万 - 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
- 批准号:
8848046 - 财政年份:2012
- 资助金额:
$ 46.17万 - 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
- 批准号:
8276007 - 财政年份:2012
- 资助金额:
$ 46.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 46.17万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 46.17万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 46.17万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 46.17万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 46.17万 - 项目类别: