A New Targeting Approach to Inhibit Budding of the Ebola Virus
抑制埃博拉病毒萌芽的新靶向方法
基本信息
- 批准号:9763445
- 负责人:
- 金额:$ 22.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-14 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAmino Acid SequenceAmino AcidsAnimal ModelAnimalsAntibodiesAntibody TherapyBiological AssayBiological ModelsBiophysicsCell SurvivalCell membraneCellsChemicalsClinicalCommunicable DiseasesComputer AnalysisDataDimerizationDisease OutbreaksDrug TargetingEbola virusEquilibriumEscape MutantFDA approvedFamilyFatality rateFiloviridae InfectionsFilovirusFrankfurt-Marburg Syndrome VirusFrightGenerationsGenesGlycoproteinsHumanIn VitroLaboratoriesLeadLife Cycle StagesLipid BilayersLipid BindingLipidsMalignant NeoplasmsMammalian CellMediatingMethodsModelingMutateMutationN-terminalPatientsPenetrationPeptidesPharmacologyPlasma CellsPreventive measureProcessProductionPropertyProteinsPublic HealthRecording of previous eventsStructural ProteinStructureTestingTherapeuticVaccine Clinical TrialVaccine TherapyVaccinesViralViral Matrix ProteinsVirionVirusVirus AssemblyVirus ReplicationVirus-like particleWestern Africaalpha helixbasechemical synthesiscostdesigndimerexperimental studyinsightlead candidatemonomerpandemic diseaseprotein protein interactionprotein structuresmall moleculetherapeutic targettherapeutic vaccinetoolvirus envelope
项目摘要
Abstract: Lipid-enveloped viruses replicate and bud from host cell membranes where they acquire their
lipid coat. Understanding the budding processes of several viruses has had significant impact on
elucidating the viral life cycle and identifying therapeutic targets. Filoviruses have a filamentous lipid-
envelope and despite being discovered more than 30 years ago, not much is known on how they assemble
and bud from the host cell plasma membrane. Filoviruses, which include Ebola virus (EBOV), have a high
fatality rate and there is still a lack of FDA approved therapeutics or vaccines for treatment. Moreover, the
EBOV glycoprotein, the prime target of antibody and vaccine therapy undergoes a high rate of mutation in
animal and human studies and escape mutant of glycoprotein have been found as EBOV is passaged
through animal models. Filoviruses encode seven genes including the viral matrix protein VP40, which
regulates budding from the host cell. VP40 as the only filovirus protein expressed in mammalian cells is
sufficient to produce virus like particles (VLPs) nearly indistinguishable from live virions. Thus, VP40 has
served as a model to study viral budding outside of BSL-4 laboratories. VP40 has been shown to be a
dimer, which is mediated by a-helical interactions in its N-terminal domain (NTD). Mutation of residues in
the NTD of VP40 that mediate dimerization is sufficient to abrogate viral budding in model systems. To date,
little is known about how VP40 monomer/dimer equilibrium and biophysics of oligomer assembly are
regulated as well as if VP40 is a viable drug target in the viral life cycle. The central hypothesis of this R21
proposal is that generation of a new chemical toolkit based upon stapled a-helical peptides can be used to
study VP40 assembly and inhibit VP40 dimerization. In specific aim 1, we will design and synthesize lead
candidate stapled a-helical peptides that target the VP40 dimer interface. We will elucidate the optimal
amino acid sequences and chemical linker of stapled a-helical peptides using computational analysis. We
hypothesize that optimization of the stapled helices can be performed to block VP40 dimer formation in vitro
and in cells. We will use computational analysis and a rapid chemical synthesis method to generate lead
candidates for quantitative analysis. Specific aim 2 will investigate the mechanism by which stapled a-
helical peptides interact with VP40 and inhibit VP40 dimerization and budding of VLPs. Quantitative assays
of VP40 dimer formation, VP40 lipid-binding, and budding of VLPs will be assessed to decipher the ability of
lead compounds to inhibit dimer formation and subsequent budding. Taken together, these studies should
produce new and important mechanistic insight into the viability of VP40 as a drug target and a better
biophysical understanding of the properties that govern VP40 assembly.
摘要:脂质发达的病毒从宿主细胞机制中复制和芽
脂质外套。 了解几种病毒的萌芽过程对
阐明病毒生命周期并确定治疗靶标。丝病毒具有丝状脂质 -
信封,尽管被发现了30多年前,但他们的组装方式并不多
来自宿主细胞质膜的芽。包括埃博拉病毒(EBOV)在内的丝状病毒具有高度
死亡率,仍然缺乏FDA批准的治疗疗法或治疗疫苗。而且,
EBOV糖蛋白,抗体和疫苗疗法的主要靶标经历了很高的突变率
随着EBOV通过
通过动物模型。 FILOVIRES编码七个基因,包括病毒基质蛋白VP40,其中
调节从宿主细胞中萌芽。 VP40作为在哺乳动物细胞中表达的唯一filevirus蛋白是
足以与现场病毒几乎无法区分的颗粒(VLP)等病毒。那就是VP40
作为研究BSL-4实验室以外的病毒萌芽的模型。 VP40已显示为
二聚体是由其N末端结构域(NTD)中的A螺旋相互作用介导的。残差突变
介导二聚化的VP40的NTD足以消除模型系统中的病毒萌芽。迄今为止,
关于VP40单体/二聚体平衡和低聚物组件的生物物理学的了解知之甚少
在病毒生命周期中,受监管以及VP40是可行的药物靶标。此R21的中心假设
建议是,基于钉轴螺旋肽的新化学工具包可以用于
研究VP40组装并抑制VP40二聚化。在特定目标1中,我们将设计和合成铅
候选者瞄准了针对VP40二聚体界面的A螺旋肽。我们将阐明最佳
使用计算分析,氨基酸序列和化学连接器滞留了A螺旋肽。我们
假设可以对钉螺旋进行优化以阻止VP40二聚体在体外形成
和在细胞中。我们将使用计算分析和快速化学合成方法来产生铅
候选人进行定量分析。特定目标2将研究钉a的机制
螺旋肽与VP40相互作用,并抑制VP40二聚化和VLP的萌芽。定量测定
将评估VP40二聚体形成,VP40脂质结合和VLP的萌芽
导致化合物抑制二聚体形成和随后的萌芽。两者一起,这些研究应该
对VP40作为药物靶标的可行性产生新的和重要的机械洞察力,并且更好
对控制VP40组装的性质的生物物理理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Virgil Stahelin其他文献
Robert Virgil Stahelin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Virgil Stahelin', 18)}}的其他基金
Elucidation of Assembly and Budding Mechanisms of SARS-CoV-2
阐明 SARS-CoV-2 的组装和出芽机制
- 批准号:
10595342 - 财政年份:2022
- 资助金额:
$ 22.64万 - 项目类别:
Elucidation of Assembly and Budding Mechanisms of SARS-CoV-2
阐明 SARS-CoV-2 的组装和出芽机制
- 批准号:
10707286 - 财政年份:2022
- 资助金额:
$ 22.64万 - 项目类别:
Computational and Biophysical Analysis of the Filovirus Matrix Protein System
丝状病毒基质蛋白系统的计算和生物物理分析
- 批准号:
10317727 - 财政年份:2021
- 资助金额:
$ 22.64万 - 项目类别:
Computational and Biophysical Analysis of the Filovirus Matrix Protein System
丝状病毒基质蛋白系统的计算和生物物理分析
- 批准号:
10448452 - 财政年份:2021
- 资助金额:
$ 22.64万 - 项目类别:
Computational and Biophysical Analysis of the Filovirus Matrix Protein System
丝状病毒基质蛋白系统的计算和生物物理分析
- 批准号:
10669678 - 财政年份:2021
- 资助金额:
$ 22.64万 - 项目类别:
Investigation of the role of phosphatidic acid metabolism in filovirus budding
磷脂酸代谢在丝状病毒出芽中的作用的研究
- 批准号:
9979431 - 财政年份:2020
- 资助金额:
$ 22.64万 - 项目类别:
相似国自然基金
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:32271536
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:22201105
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
- 批准号:82003257
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Single-molecule protein sequencing by detection and identification of N-terminal amino acids
通过检测和鉴定 N 端氨基酸进行单分子蛋白质测序
- 批准号:
10646060 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别: