A New Targeting Approach to Inhibit Budding of the Ebola Virus
抑制埃博拉病毒萌芽的新靶向方法
基本信息
- 批准号:9763445
- 负责人:
- 金额:$ 22.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-14 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAmino Acid SequenceAmino AcidsAnimal ModelAnimalsAntibodiesAntibody TherapyBiological AssayBiological ModelsBiophysicsCell SurvivalCell membraneCellsChemicalsClinicalCommunicable DiseasesComputer AnalysisDataDimerizationDisease OutbreaksDrug TargetingEbola virusEquilibriumEscape MutantFDA approvedFamilyFatality rateFiloviridae InfectionsFilovirusFrankfurt-Marburg Syndrome VirusFrightGenerationsGenesGlycoproteinsHumanIn VitroLaboratoriesLeadLife Cycle StagesLipid BilayersLipid BindingLipidsMalignant NeoplasmsMammalian CellMediatingMethodsModelingMutateMutationN-terminalPatientsPenetrationPeptidesPharmacologyPlasma CellsPreventive measureProcessProductionPropertyProteinsPublic HealthRecording of previous eventsStructural ProteinStructureTestingTherapeuticVaccine Clinical TrialVaccine TherapyVaccinesViralViral Matrix ProteinsVirionVirusVirus AssemblyVirus ReplicationVirus-like particleWestern Africaalpha helixbasechemical synthesiscostdesigndimerexperimental studyinsightlead candidatemonomerpandemic diseaseprotein protein interactionprotein structuresmall moleculetherapeutic targettherapeutic vaccinetoolvirus envelope
项目摘要
Abstract: Lipid-enveloped viruses replicate and bud from host cell membranes where they acquire their
lipid coat. Understanding the budding processes of several viruses has had significant impact on
elucidating the viral life cycle and identifying therapeutic targets. Filoviruses have a filamentous lipid-
envelope and despite being discovered more than 30 years ago, not much is known on how they assemble
and bud from the host cell plasma membrane. Filoviruses, which include Ebola virus (EBOV), have a high
fatality rate and there is still a lack of FDA approved therapeutics or vaccines for treatment. Moreover, the
EBOV glycoprotein, the prime target of antibody and vaccine therapy undergoes a high rate of mutation in
animal and human studies and escape mutant of glycoprotein have been found as EBOV is passaged
through animal models. Filoviruses encode seven genes including the viral matrix protein VP40, which
regulates budding from the host cell. VP40 as the only filovirus protein expressed in mammalian cells is
sufficient to produce virus like particles (VLPs) nearly indistinguishable from live virions. Thus, VP40 has
served as a model to study viral budding outside of BSL-4 laboratories. VP40 has been shown to be a
dimer, which is mediated by a-helical interactions in its N-terminal domain (NTD). Mutation of residues in
the NTD of VP40 that mediate dimerization is sufficient to abrogate viral budding in model systems. To date,
little is known about how VP40 monomer/dimer equilibrium and biophysics of oligomer assembly are
regulated as well as if VP40 is a viable drug target in the viral life cycle. The central hypothesis of this R21
proposal is that generation of a new chemical toolkit based upon stapled a-helical peptides can be used to
study VP40 assembly and inhibit VP40 dimerization. In specific aim 1, we will design and synthesize lead
candidate stapled a-helical peptides that target the VP40 dimer interface. We will elucidate the optimal
amino acid sequences and chemical linker of stapled a-helical peptides using computational analysis. We
hypothesize that optimization of the stapled helices can be performed to block VP40 dimer formation in vitro
and in cells. We will use computational analysis and a rapid chemical synthesis method to generate lead
candidates for quantitative analysis. Specific aim 2 will investigate the mechanism by which stapled a-
helical peptides interact with VP40 and inhibit VP40 dimerization and budding of VLPs. Quantitative assays
of VP40 dimer formation, VP40 lipid-binding, and budding of VLPs will be assessed to decipher the ability of
lead compounds to inhibit dimer formation and subsequent budding. Taken together, these studies should
produce new and important mechanistic insight into the viability of VP40 as a drug target and a better
biophysical understanding of the properties that govern VP40 assembly.
摘要: 脂包膜病毒从宿主细胞膜上复制并出芽,并在那里获得它们的病毒。
了解几种病毒的出芽过程对病毒产生了重大影响。
阐明病毒生命周期并确定治疗靶点。丝状病毒具有丝状脂质-
尽管 30 多年前就被发现了,但人们对它们的组装方式知之甚少
丝状病毒,包括埃博拉病毒 (EBOV),具有很高的病毒感染率。
死亡率高,而且仍然缺乏 FDA 批准的治疗方法或疫苗。
埃博拉病毒糖蛋白是抗体和疫苗治疗的主要靶标,在
随着埃博拉病毒的传代,动物和人类研究发现了糖蛋白的逃逸突变体
通过动物模型,丝状病毒编码 7 个基因,包括病毒基质蛋白 VP40。
VP40 是哺乳动物细胞中唯一表达的丝状病毒蛋白,可调节宿主细胞的出芽。
足以产生与活病毒体几乎无法区分的病毒样颗粒(VLP)。
VP40 已被证明是在 BSL-4 实验室之外研究病毒出芽的模型。
二聚体,由其 N 末端结构域 (NTD) 中的 aα 螺旋相互作用介导。
介导二聚化的 VP40 的 NTD 足以消除模型系统中的病毒出芽。
关于 VP40 单体/二聚体平衡和寡聚体组装的生物物理学如何进行知之甚少
R21 的中心假设是 VP40 是否是病毒生命周期中可行的药物靶标。
建议基于钉合α-螺旋肽生成新的化学工具包,可用于
研究VP40组装并抑制VP40二聚化在具体目标1中,我们将设计并合成先导化合物。
我们将阐明针对 VP40 二聚体界面的候选钉合 aα-螺旋肽。
我们使用计算分析研究了钉合α-螺旋肽的氨基酸序列和化学接头。
促进了可以对钉合螺旋进行优化以阻断体外 VP40 二聚体的形成
我们将在细胞中使用计算分析和快速化学合成方法来产生铅。
具体目标 2 将研究钉合 a- 的机制。
螺旋肽与 VP40 相互作用并抑制 VP40 二聚化和 VLP 的出芽。
将评估 VP40 二聚体形成、VP40 脂质结合和 VLP 出芽的能力,以破译
综上所述,这些研究应该能够抑制二聚体形成和随后的出芽。
对 VP40 作为药物靶点的可行性产生新的、重要的机制见解,并更好地
对控制 VP40 组装特性的生物物理学理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Virgil Stahelin其他文献
Robert Virgil Stahelin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Virgil Stahelin', 18)}}的其他基金
Elucidation of Assembly and Budding Mechanisms of SARS-CoV-2
阐明 SARS-CoV-2 的组装和出芽机制
- 批准号:
10595342 - 财政年份:2022
- 资助金额:
$ 22.64万 - 项目类别:
Elucidation of Assembly and Budding Mechanisms of SARS-CoV-2
阐明 SARS-CoV-2 的组装和出芽机制
- 批准号:
10707286 - 财政年份:2022
- 资助金额:
$ 22.64万 - 项目类别:
Computational and Biophysical Analysis of the Filovirus Matrix Protein System
丝状病毒基质蛋白系统的计算和生物物理分析
- 批准号:
10317727 - 财政年份:2021
- 资助金额:
$ 22.64万 - 项目类别:
Computational and Biophysical Analysis of the Filovirus Matrix Protein System
丝状病毒基质蛋白系统的计算和生物物理分析
- 批准号:
10448452 - 财政年份:2021
- 资助金额:
$ 22.64万 - 项目类别:
Computational and Biophysical Analysis of the Filovirus Matrix Protein System
丝状病毒基质蛋白系统的计算和生物物理分析
- 批准号:
10669678 - 财政年份:2021
- 资助金额:
$ 22.64万 - 项目类别:
Investigation of the role of phosphatidic acid metabolism in filovirus budding
磷脂酸代谢在丝状病毒出芽中的作用的研究
- 批准号:
9979431 - 财政年份:2020
- 资助金额:
$ 22.64万 - 项目类别:
相似国自然基金
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
- 批准号:82003257
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
谷氧还蛋白PsGrx在南极海冰细菌极端生境适应中的功能研究
- 批准号:41876149
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
氨基酸转运蛋白LAT1调控mTOR信号通路对鼻咽癌放射敏感性的影响及其机制研究
- 批准号:81702687
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Single-molecule protein sequencing by detection and identification of N-terminal amino acids
通过检测和鉴定 N 端氨基酸进行单分子蛋白质测序
- 批准号:
10646060 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别: