Dynamic modulation of ionic and lipid signaling by neuronal Kv2 channels
神经元 Kv2 通道对离子和脂质信号传导的动态调节
基本信息
- 批准号:9765044
- 负责人:
- 金额:$ 6.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-09 至 2020-11-08
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnxiety DisordersArchitectureBiologyBrainCell membraneCell physiologyCharacteristicsClassificationClinicalComprehensionDefectDendritesDense Core VesicleDiseaseEndoplasmic ReticulumEnzymesEpilepsyExocytosisFellowshipGenerationsGoalsHomeostasisInterneuronsIon ChannelKnockout MiceLinkLipidsMass Spectrum AnalysisMediatingMediator of activation proteinMembrane LipidsMentorsMolecularMutationNeuroendocrine CellNeuronsNeuropeptidesOrganellesPathogenesisPathogenicityPhysiologicalProteinsRattusRegulationResearchResearch DesignResearch PersonnelResourcesRoleRyanodine Receptor Calcium Release ChannelSignal TransductionSiteSynaptic VesiclesTechniquesTestingTissuesTrainingVAPA geneVoltage-Gated Potassium Channelautism spectrum disorderbasehippocampal pyramidal neuronimprovedinsightlipid transportlive cell imagingnervous system disorderneuronal cell bodyneurophysiologyneurotransmissionnovelnovel therapeutic interventionrecruitspatiotemporaltreatment strategyuptakevesicular releasevoltage
项目摘要
The training plan outlined in this proposal focuses on defining the fundamental neurophysiological functions controlled by the voltage-gated K+ channel Kv2.1. Kv2.1 channels form prominent plasma membrane (PM) clusters on the neuronal soma that are in close proximity to the endoplasmic reticulum (ER). These Kv2.1- associated ER-PM junctions, or EPJs, often contain Ca2+ handling machinery, including L-type Ca2+ channels (LTCCs) and ryanodine receptor (RyR) ER Ca2+ release channels. In addition to being significant sites of Ca2+ uptake and release, EPJs also serve important roles in modulating cellular lipid handling. Lipid transfer between the ER and PM can be acutely regulated by Ca2+, and lipid-modulating enzymes at EPJs exert a reciprocal effect on cellular Ca2+ dynamics. As Kv2.1 clusters enhance the formation EPJs and may modulate Ca2+ signaling at these sites, Kv2.1 is perfectly poised to integrate and control neuronal Ca2+- and lipid signals. Importantly, clinical findings suggest that Kv2.1-associated EPJs are critical for normal brain function: three distinct mutations in Kv2.1 that disrupt the channel domain required for its clustered organization with EPJs cause severe neurodevelopmental delay. However, the molecular architecture, regulation, and functional roles of Kv2.1- associated EPJs remain poorly understood. This presents a major obstacle to determining how Kv2.1 channels contribute to normal neuronal function and limits our understanding of its contributions to the pathogenesis of debilitating neuronal disorders. Although its role in neurons is not yet clear, Kv2.1 clustering in neuroendocrine cells was found to facilitate the exocytosis of dense-core vesicles (DCV), secretory organelles that in neurons contain diverse neuroactive cargo. As defects in neuronal DCV release are associated with autism, anxiety disorders, and epilepsy, it is important to define the molecular points of intersection between Kv2.1 channels and DCV release. I hypothesize that Kv2.1-associated EPJs control neuronal Ca2+ and lipid signals to regulate DCV release. I will test the central hypothesis by determining the mechanisms by which Kv2.1 channels modulate local Ca2+ and lipid homeostasis and signaling in neurons (Aim 1). These findings will be extended to detailed studies of how Kv2.1 channels contribute to the regulation of somatodendritic DCV release (Aim 2). Successful completion of the proposed research will advance our understanding of the fundamental mechanisms regulating neuron function. Moreover, elucidating the influence of Kv2.1 channels on neuronal DCV release will greatly expand comprehension of the mechanisms underlying DCV exocytosis and may also improve understanding of the mechanisms underlying Kv2.1’s contributions to neurological disorders. Through this fellowship, I will develop 1) a novel understanding of the physiological functions of Kv2.1 channels, and 2) my potential as an independent investigator focused on ion channel biology. These training goals will be facilitated by the detailed research plan, the exceptionally qualified mentors with expertise in the proposed study design, and the outstanding facilities and training resources available at UC Davis.
该提案中的培训计划着重于由电压门控EL KV2.1控制的基本神经生理功能。 )。 y由Ca2+和脂质调制的酶在kv2 .1群集中对细胞Ca2+动力学产生相互效应脂质信号确定KV2.1通道如何促进神经元功能的主要障碍,并限制了我们对衰弱的神经元疾病的贡献的理解,其在其在神经元中的作用尚未明确促进囊泡(DCV)货物。通过确定KV2.1通道模块化局部CA2+和脂质稳态和神经元中的信号来调节DCV的信号。常规的C DCV释放(AIM 2)。拟议的研究的成功压缩将提高我们对调节神经元功能的基本机制的理解。了解Kv2.1对神经系统疾病的贡献。计划在支撑研究设计以及UC Davis提供的出色设施和培训资源中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas C. Vierra其他文献
Epilepsy and neurobehavioral abnormalities in mice with a KCNB1 pathogenic variant that alters conducting and non-conducting functions of KV2.1
具有改变 KV2.1 传导和非传导功能的 KCNB1 致病性变异的小鼠的癫痫和神经行为异常
- DOI:
10.1101/770206 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
N. Hawkins;Sunita N. Misra;M. Jurado;Nicholas C. Vierra;Kimberly Nguyen;L. Wren;A. George;J. Trimmer;J. Kearney - 通讯作者:
J. Kearney
Nicholas C. Vierra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas C. Vierra', 18)}}的其他基金
Dynamic modulation of ionic and lipid signaling by neuronal Kv2 channels
神经元 Kv2 通道对离子和脂质信号传导的动态调节
- 批准号:
9981844 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别:
TALK-1 channels as a novel target to modulate basal insulin secretion and obesity
TALK-1通道作为调节基础胰岛素分泌和肥胖的新靶点
- 批准号:
9122843 - 财政年份:2016
- 资助金额:
$ 6.12万 - 项目类别:
TALK-1 channels as a novel target to modulate basal insulin secretion and obesity
TALK-1通道作为调节基础胰岛素分泌和肥胖的新靶点
- 批准号:
9254205 - 财政年份:2016
- 资助金额:
$ 6.12万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Processes and circuitry underlying threat sensitivity as a treatment target for comorbid anxiety and depression
威胁敏感性的过程和电路作为共病焦虑和抑郁的治疗目标
- 批准号:
10625215 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别: