Cloud quantitative imaging for whole-body tumor burden in neurofibromatoses
神经纤维瘤全身肿瘤负荷的云定量成像
基本信息
- 批准号:9762866
- 负责人:
- 金额:$ 71.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsCancer CenterClinicClinicalClinical ResearchClinical ServicesCloud ComputingCommunitiesComputer softwareData CollectionDevelopmentDiseaseDocumentationEvaluationEvaluation StudiesFundingGeneral HospitalsGoalsHospitalsImage AnalysisInfrastructureInternetIntuitionLettersLicensingLifeMagnetic Resonance ImagingMassachusettsMeasurementMedical DeviceMedical ImagingMethodsModelingMonitorNF1 geneNamesNerve Sheath TumorsNeurofibromatosesPatientsPerformancePhasePlexiform NeurofibromaPredispositionPreparationPrivatizationProgression-Free SurvivalsRecoveryRegulationReportingReproducibilityRunningSchwannomatosisSensitivity and SpecificitySiteSmall Business Technology Transfer ResearchSoftware ToolsStructureSystemTechniquesTechnologyThree-Dimensional ImagingTimeTranslatingTranslationsTumor BurdenTumor VolumeValidationVendorbaseclinical translationcloud platformcostdeep learningend of lifefollow-upimaging modalityimprovedinterestneurogeneticspredict clinical outcomeprospectiveprototypequantitative imagingresearch clinical testingsoftware as a servicesoftware developmenttreatment responsetumortumor progressionvirtualwhole body imaging
项目摘要
Project Summary / Abstract
The neurofibromatoses (NFs), including NF1, NF2, and schwannomatosis, are a group of autosomal-dominant
neurogenetic disorders characterized by a predisposition in virtually 100% of patients to develop multiple nerve
sheath tumors. The determination of tumor burden on magnetic resonance imaging (MRI) is indispensable for
the longitudinal management of NF patients, which includes life-long follow-up for the monitoring of tumor
progression and the assessment of treatment response. However, volumetric quantification of NF tumors is not a
clinical routine because of the technical challenges in the accurate and reproducible segmentation of
highly-irregular and infiltrating NF tumors, in particular plexiform neurofibromas on MRI.
The goal of this STTR project is to develop cloud quantitative imaging (CQI) for NF software, denoted as
CQI-NF, which will provide the technical and clinical service for volumetric quantification of NF tumors on
whole-body and regional MRI via "virtualization" (cloud computing) technology. The product developed in this
STTR will provide access to this technology for the NF clinical community nationwide and worldwide without the
excessive cost to maintain on-site advanced volumetric imaging analysis software and hardware. This project
will be built upon existing technologies for volumetric imaging analysis developed on the software platform
“3DQI” in the 3D Imaging Lab at Massachusetts General Hospital (MGH), and will be evaluated using 200
longitudinal whole-body and regional MRI cases collected from the NF community worldwide.
The specific aims of this Phase II project are: (1) Development of CQI-NF system: We will continue to develop
the CQI-NF system prototyped in our Phase I project to improve the accuracy and efficiency of segmentation by
paralleling dynamic-threshold level set (DT level set) in multi-server platform, combining deep-learning in DT
level set for the segmentation of NF tumors, and to translate the CQI-NF system from 3DQI/NF into a private
cloud platform (such as TeraRecon's iNtuition CLOUD) for the provision of volumetric quantification of NF using
a software-as-a-service (SaaS) model in the NF community. (2) Evaluation of CQI-NF system: We will conduct a
retrospective clinical study to evaluate the accuracy and reproducibility of the CQI-NF system in the longitudinal
monitoring of 200 NF patients collected at MGH Cancer Center and our clinical collaborators worldwide in the NF
community. (3) Preparation of FDA 510(k) clearance submission: We will establish the quality management
system for CQI-NF to meet FDA regulation, and prepare the required documentation for FDA 510(k) clearance
submission for the long-term project goal of clinical translation of CQI-NF.
The successful development and validation of the proposed CQI-NF system will have a high clinical impact in the
NF community by providing a cloud-computing infrastructure for the volumetric imaging analysis of NF on MRI,
which is not available in current clinical routine, thereby leading to a substantial advance in the longitudinal
management of NF patients.
项目摘要 /摘要
神经纤维瘤(NFS),包括NF1,NF2和Schwannomatisoise,是一组常染色体主导者
神经遗传疾病的特征是几乎100%患者发育多个神经的特征
护套肿瘤。在磁共振成像(MRI)上确定肿瘤燃烧(MRI)是必不可少的
NF患者的纵向管理,其中包括终身监测肿瘤的随访
进展和治疗反应的评估。但是,NF肿瘤的体积定量不是
临床例程是因为在准确且可重复的分割方面面临技术挑战
高度刺激和浸润的NF肿瘤,特别是MRI上的丛状神经纤维瘤。
该STTR项目的目的是为NF软件开发云定量成像(CQI),称为
CQI-NF,它将提供技术和临床服务,用于对NF肿瘤的体积定量
全身和区域MRI通过“虚拟化”(云计算)技术。在此开发的产品
STTR将为全国NF临床社区和全球范围内提供该技术的访问权限
维护现场高级体积成像分析软件和硬件的过多成本。这个项目
将建立在用于在软件平台上开发的体积成像分析的现有技术的基础上
马萨诸塞州综合医院(MGH)的3D成像实验室中的“ 3DQI”,将使用200
从全球NF社区收集的纵向全身和区域MRI案例。
该第二阶段项目的具体目的是:(1)开发CQI-NF系统:我们将继续发展
CQI-NF系统在我们的I阶段项目中进行了原型,以提高分割的准确性和效率
多服务器平台中的平行动态阈值级集(DT级集),结合了DT中的深度学习
将NF肿瘤分割的水平设置,并将CQI-NF系统从3DQI/NF转换为私有
云平台(例如Terarecon的Intuition Cloud),用于使用NF的体积定量
NF社区中的软件即服务(SaaS)模型。 (2)评估CQI-NF系统:我们将进行一次
回顾性临床研究,以评估纵向中CQI-NF系统的准确性和繁殖
监测在MGH癌症中心收集的200名NF患者以及我们在NF的全球临床合作者
社区。 (3)FDA 510(k)清算提交的准备:我们将建立质量管理
CQI-NF符合FDA法规的系统,并准备FDA 510(k)清算的所需文档
提交CQI-NF临床翻译的长期项目目标。
拟议的CQI-NF系统的成功开发和验证将对
NF社区通过提供云计算基础架构,用于MRI上NF的体积成像分析,
这在当前的临床例程中不可用,从而导致了纵向的重大进步
NF患者的管理。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ten-Year Follow-up of Internal Neurofibroma Growth Behavior in Adult Patients With Neurofibromatosis Type 1 Using Whole-Body MRI.
使用全身 MRI 对 1 型神经纤维瘤病成年患者的内部神经纤维瘤生长行为进行十年随访。
- DOI:10.1212/wnl.0000000000201535
- 发表时间:2023
- 期刊:
- 影响因子:9.9
- 作者:Ly,KIna;Merker,VanessaL;Cai,Wenli;Bredella,MiriamA;Muzikansky,Alona;Thalheimer,RaquelD;Da,JenniferLiwei;Orr,ChristinaC;Herr,HamiltonP;Morris,MaryE;Chang,ConnieY;Harris,GordonJ;Plotkin,ScottR;Jordan,JustinT
- 通讯作者:Jordan,JustinT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenli Cai其他文献
Wenli Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenli Cai', 18)}}的其他基金
MDCT Quantification of hepatic tumor viability for assessment of cancer therapy
MDCT 量化肝肿瘤活力以评估癌症治疗
- 批准号:
8782327 - 财政年份:2014
- 资助金额:
$ 71.94万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Clinical Cytophone platform for detection of circulating melanoma cells.
用于检测循环黑色素瘤细胞的临床 Cytophone 平台。
- 批准号:
10010161 - 财政年份:2020
- 资助金额:
$ 71.94万 - 项目类别:
Clinical Cytophone platform for detection of circulating melanoma cells.
用于检测循环黑色素瘤细胞的临床 Cytophone 平台。
- 批准号:
10246167 - 财政年份:2020
- 资助金额:
$ 71.94万 - 项目类别: