Targeting Mitochondrial Iron Metabolism in Inflammatory Bowel Disease
靶向炎症性肠病的线粒体铁代谢
基本信息
- 批准号:9757782
- 负责人:
- 金额:$ 15.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:Aconitate HydrataseAcuteAdenosine TriphosphateAffectAnimal ModelAntigensBiologyCarbonCell SurvivalCell modelCell physiologyCellsChelating AgentsChronicCitric Acid CycleClinicClinicalColitisColonConsumptionDevelopmentDietDietary IronDisease ProgressionEpithelialFunctional disorderGenerationsGerm-FreeGlucoseGoalsHistologicHomeostasisInflammation MediatorsInflammatory Bowel DiseasesInflammatory ResponseInflammatory disease of the intestineIntakeIntestinesIronIron Chelating AgentsIron ChelationKnockout MiceKnowledgeLabelLaboratoriesLeadLipidsMacronutrients NutritionMediatingMediator of activation proteinMentorsMetabolismMicronutrientsMitochondriaMitochondrial ProteinsModelingMucous MembraneMusNutrientOxidative StressPathogenesisPatientsPhysiologicalPlayPopulationPositioning AttributePredispositionPreventionPrevention strategyProductionProstateProteinsProteomicsQuality of lifeRadioactiveRattusReactive Oxygen SpeciesReagentResearchResearch PersonnelRoleSeveritiesSodium Dextran SulfateSulfurSupporting CellSystemTestingTissuesTrainingTransgenic MiceTricarboxylic Acidsbasecareercareer developmentdysbiosisgut microbiotahost microbiotaimprovedin vitro Modelinterestintestinal epitheliumiron (III) reductaseiron metabolismiron supplementiron supplementationmicrobiotamitochondrial dysfunctionmitochondrial metabolismmouse modelnovelnovel strategiesoverexpressionpreservationpreventpublic health relevanceresponseuptake
项目摘要
1. Project Summary
Mitochondrial dysfunction is an early hallmark of inflammatory bowel disease (IBD). In healthy cells,
mitochondria consume nutrients and generate most of the energy. However, in cells from inflamed tissue, less
energy is produced by mitochondria, and nutrients are reorganized as building blocks to better support cell
survival. To date, extensive studies have been focused on the changes and impact of macronutrients such as
glucose and lipids in inflamed tissues, but much less is known about the contribution of micronutrients such as
iron to IBD. Iron is essential in mitochondrial generation of reactive oxygen species (ROS), which is important
for cell survival. Iron is also needed for mitochondria to produce iron-sulfur clusters (ISC) that support many
critical cellular processes including tricarboxylic acid (TCA) cycle. The long-term goal is to understand how iron
interacts with mitochondria and contributes to the disease progression of IBD. The candidate hypothesizes that
mitochondrial iron is a critical mediator for the IBD development by regulating TCA cycle and ROS production.
There have been several hurdles that have made understanding the effects of mitochondrial iron on the
intestinal inflammation difficult to study, namely appropriate cell and animal models. Here the candidate
proposes to utilize a set of unique models: 1) enteroids that keep an intact iron transport system and
inflammatory response; 2) a novel transgenic mouse model with intestinal epithelium-specific overexpression
of a ferrireductase six transmembrane epithelial antigen 4 (STEAP4), which has enhanced mitochondrial iron
accumulation and increased susceptibility to colitis; 3) a novel and highly clinic-relevant humanized Il10-/-
mouse model of chronic colitis. The candidate will focus on the following specific aims: 1) Characterize the
effect of iron on mitochondrial metabolism in IBD; 2) Understand the role of STEAP4 in mitochondrial iron
homeostasis in IBD; 3) Characterize if mitochondrial iron dysregulation contributes to IBD-associated
dysbiosis. Accomplishing these goals will provide a mechanistic explanation and novel targets for prevention or
treatment of IBD.
Aim 1 in the proposal will build upon the strengths and interests of the mentors’ laboratories with respect to iron
metabolism in the intestine. Moreover, accomplishing Aim 1 will allow the adequate training to utilize the novel
enteroids to study the impact of mitochondrial iron on TCA cycles and the utilization of iron. This will aid the
transition of the candidate’s research career toward an independent investigator position. Accomplishing Aims
2 and 3 will allow the candidate to understand the role of the ferrireductase STEAP4 in intestinal epithelial
biology and the interaction of host mitochondrial micronutrients with the gut microbiota.
Together, this proposal is not only critical for the candidate’s career development in the field of micronutrient
metabolism and gut microbiota research, but also it will aid in understanding the pathogenesis of IBD.
1。项目摘要
线粒体功能障碍是健康细胞中炎症性肠病(IBD)的早期标志。
线粒体消耗营养,并在发炎组织中产生大部分能量。
能量是由米奇德里亚(Mitchondria)产生的,营养物质被重新化为基础,以更好地支持细胞
生存。
发炎组织中的葡萄糖和脂质物,但对微量营养素的贡献(例如
铁到IBD。
对于细胞生存也需要铁粒产生支持许多人的铁硫簇(ISC)
包括三羧酸(TCA)周期的关键细胞过程。
与线粒体相互作用,并有助于IBD的疾病进展。
线粒体铁是通过调节TCA周期和ROS产生的关键介体。
有几个障碍使线粒体铁对
肠道炎症困难tudy,即适当的细胞和动物模型。
提议利用一组独特的模型:1)保持完整的铁运输系统和
炎症反应; 2)具有特异性过表达的新型转基因小鼠模型
六跨膜上皮抗原4(step4)的六跨膜化合物(Step4)的含量增强了线粒体铁
累积和增加颜色的敏感性;
慢性结肠炎的小鼠模型。
铁对IBD的线粒体代谢的影响; 2)
IBD中的稳态;
障碍。
治疗IBD。
在提案中的目标1基于导师实验室对铁的优势和利益
此外,在肠道中的代谢。
用于研究线粒体铁对TCA周期的影响和铁的利用。
候选人的研究职业过渡到独立的研究者
2和3将允许候选者在肠上皮中的效能运动员step4的作用
生物学和宿主线粒体微量营养素与肠道菌群的相互作用。
在一起,该建议不仅对候选人在微量营养素领域的职业发展至关重要
代谢和肠道菌群研究,但它也将有助于理解IBD的发病机理。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Xue其他文献
Xiang Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Xue', 18)}}的其他基金
Profiling iron-regulated metabolic reprogramming for nucleotide biosynthesis in colon tumors
分析结肠肿瘤中核苷酸生物合成的铁调节代谢重编程
- 批准号:
10408034 - 财政年份:2020
- 资助金额:
$ 15.89万 - 项目类别:
Profiling iron-regulated metabolic reprogramming for nucleotide biosynthesis in colon tumors
分析结肠肿瘤中核苷酸生物合成的铁调节代谢重编程
- 批准号:
10629363 - 财政年份:2020
- 资助金额:
$ 15.89万 - 项目类别:
Profiling iron-regulated metabolic reprogramming for nucleotide biosynthesis in colon tumors
分析结肠肿瘤中核苷酸生物合成的铁调节代谢重编程
- 批准号:
10202652 - 财政年份:2020
- 资助金额:
$ 15.89万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Ketone Body Metabolism in CD8+ T Cell Responses
CD8 T 细胞反应中的酮体代谢
- 批准号:
10641018 - 财政年份:2022
- 资助金额:
$ 15.89万 - 项目类别:
Neuron-astrocyte interactions mediating ethanol and noradrenergic modulation of wake-promoting vPAG dopamine neurons
神经元-星形胶质细胞相互作用介导促醒 vPAG 多巴胺神经元的乙醇和去甲肾上腺素能调节
- 批准号:
10588136 - 财政年份:2022
- 资助金额:
$ 15.89万 - 项目类别:
Neuron-astrocyte interactions mediating ethanol and noradrenergic modulation of wake-promoting vPAG dopamine neurons
神经元-星形胶质细胞相互作用介导促醒 vPAG 多巴胺神经元的乙醇和去甲肾上腺素能调节
- 批准号:
10463298 - 财政年份:2022
- 资助金额:
$ 15.89万 - 项目类别: