Glucose metabolism in the fetal liver during hypoxia
缺氧时胎儿肝脏的葡萄糖代谢
基本信息
- 批准号:9756803
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2019-08-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAmino AcidsAwardBiological AssayBlood flowCarbonCell RespirationCitric Acid CycleDataDevelopmentDiabetes MellitusDiseaseElderlyEnergy SupplyEnsureEventExposure toFOXO1A geneFetal Growth RetardationFetal LiverFetal TissuesFetusFoundationsFutureGenesGenetic TranscriptionGlucoseGoalsHepaticHepatocyteHypoxiaIn VitroIndividualInsulinKineticsKnowledgeLate EffectsLearningLifeLiverLiver MitochondriaMeasuresMediatingMentorsMetabolicMetabolic DiseasesMetabolismMitochondriaMolecularMolecular TargetNon-Insulin-Dependent Diabetes MellitusNuclearOutcomeOxidesOxygen ConsumptionPathogenesisPathway interactionsPhosphorylationPhysiologyPlacental InsufficiencyPregnancyProductionPublishingResearchResearch PersonnelResearch TechnicsResistanceRiskRoleSheepSignal PathwaySignal TransductionSmall Interfering RNATechniquesTestingTissuesTracerTrainingdesigndiabetes riskexperimental studyfetalfetus hypoxiagestational hypoxiaglucose metabolismglucose productionglucose uptakein uteroin vivoin vivo Modelmetabolomemetabolomicsnoveloxidationpreferenceprogramsresponseskillssynergism
项目摘要
PROJECT SUMMARY
The goal of this proposal is to test the metabolic and molecular effects of hypoxia during late gestation on the
early activation of fetal hepatic glucose production rate (GPR). This is important because pregnancies
complicated by placental ischemic disease and specifically placental insufficiency induced intrauterine growth
restriction (IUGR) expose the fetus to hypoxia. We have shown that the fetal liver during IUGR has increased
GPR, which is resistant to suppression by insulin, a hallmark of diabetes pathogenesis. The IUGR fetus also has
limited glucose oxidation (GOX) capacity, which may re-direct carbon for GPR. Our published data in the IUGR
fetus supports a mechanism whereby FOXO1 increases PCK1 to increase glucose production, and PDK4 to limit
glucose oxidation. Importantly, the expression of both PCK1 and PDK4 are inversely related to fetal pO2
indicating that hypoxia is a common regulator of GPR and GOX. Our goal is to understand the hypoxia induced
mechanisms for the early activation of fetal GPR. We hypothesize that fetal hypoxia locks FOXO1 into an
active nuclear state. This event produces increased PCK1, which increases GPR, and increased PDK4, which
decreases GOX to re-direct carbon substrates for GPR and maintain glucose and energy supply for the fetus. I
will selectively test the effects of late gestation hypoxia on the fetal liver by precisely reducing fetal arterial pO2
to 11-14 mmHg from 0.8 to 0.9 gestation, which mimics fetal pO2 in age-matched IUGR fetuses. Aim 1 will
determine the role of fetal hypoxia in the development of increased GPR and decreased GOX and define novel
molecular mechanisms regulating this metabolic adaptation in the fetus. I will measure glucose uptake,
utilization, production, and oxidation rates in the alive fetus using metabolic tracer studies. In the fetal liver, I will
measure the FOXO1 signaling pathway and expect to identify that hypoxia induces FOXO1 activation to increase
PCK1 and PDK4. Coordinated changes in the fetal hepatic metabolome will be determined to support increased
carbon substrates for GPR. Aim 2 will determine the fetal hepatocyte substrate preference for GPR and GOX
produced by hypoxia. I will measure the oxygen consumption rate of primary fetal hepatocytes to determine if
amino acids are preferentially oxidized during hypoxia to compensate for decreased GOX. I will interrogate how
hypoxia-induced FOXO1 signaling coordinates GPR and GOX by selectively inducing hypoxia and inhibiting
FOXO1. Expected outcomes: Fetal hypoxia will activate GPR and limit GOX through FOXO1 specific
mechanisms. Impact: I will define the fetal metabolic and molecular adaptations to hypoxia, which is key to
understanding how hypoxia promotes early activation of GPR in the fetal liver, establishing a direct risk for
developing type 2 diabetes later in life. The metabolism training plan accompanying these research aims will
provide integrative training in metabolic and molecular techniques at the whole-body (fetal), tissue (liver), and
cellular (hepatocyte) level to promote my independence as a researcher in fetal metabolism.
项目摘要
该提案的目的是测试晚期妊娠期间缺氧对缺氧的代谢和分子作用对
胎儿肝葡萄糖产生速率(GPR)的早期激活。这很重要,因为怀孕
胎盘缺血性疾病复杂,特别是胎盘不足引起的宫内生长
限制(IUGR)暴露于缺氧。我们已经表明,IUGR期间的胎儿肝脏增加了
GPR,对胰岛素的抑制作用,胰岛素是糖尿病发病机理的标志。 IUGR胎儿也有
有限的葡萄糖氧化(GOX)容量,可能会重新指导GPR的碳。我们在IUGR中发布的数据
胎儿支持FOXO1增加PCK1以增加葡萄糖产生的机制,并限制PDK4
葡萄糖氧化。重要的是,PCK1和PDK4的表达与胎儿PO2成反比
表明缺氧是GPR和GOX的常见调节剂。我们的目标是了解引起的缺氧
胎儿GPR早期激活的机制。我们假设胎儿缺氧将FOXO1锁定在一个
活跃的核国家。该事件会产生增加的PCK1,这增加了GPR并增加了PDK4,这
减少GOX以重新指导GPR的碳底物,并维持胎儿的葡萄糖和能量供应。我
将通过精确降低胎儿动脉PO2有选择地测试晚期妊娠缺氧对胎儿肝脏的影响
从0.8到0.9妊娠11-14 mmHg,在年龄匹配的IUGR胎儿中模仿胎儿PO2。目标1意志
确定胎儿缺氧在增加GPR和降低GOX并定义新颖的作用中的作用
分子机制调节胎儿的代谢适应性。我将测量葡萄糖摄取,
使用代谢示踪剂研究,活着胎儿的利用,生产和氧化速率。在胎儿肝中,我会
测量FOXO1信号通路,并期望确定缺氧会诱导FOXO1激活增加
PCK1和PDK4。将确定胎儿肝代谢组的协调变化以支持增加
GPR的碳底物。 AIM 2将确定胎儿肝细胞底物对GPR和GOX的偏好
由缺氧产生。我将测量原发性胎儿肝细胞的氧气消耗率,以确定是否是否
在缺氧期间优先氧化氨基酸,以补偿降低的GOX。我会审问如何
缺氧诱导的FOXO1信号传导通过选择性诱导缺氧并抑制来辅助GPR和GOX
FOXO1。预期结果:胎儿缺氧将激活GPR并限制GOX通过FOXO1特异性
机制。影响:我将定义胎儿代谢和分子适应缺氧,这是
了解缺氧如何促进胎儿肝脏中GPR的早期激活,从而建立直接风险
生命后期发展2型糖尿病。这些研究目的伴随的新陈代谢培训计划将
在全身(胎儿),组织(肝)和
细胞(肝细胞)水平,以促进我作为胎儿代谢研究人员的独立性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda K Jones其他文献
Effect of inhaled carbon dioxide on laryngeal abduction.
吸入二氧化碳对喉外展的影响。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.3
- 作者:
J. Cheetham;Amanda K Jones;M. Martin‐Flores - 通讯作者:
M. Martin‐Flores
Amanda K Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
A bioluminescent-based imaging probe for noninvasive longitudinal monitoring of CoQ10 uptake in vivo
基于生物发光的成像探针,用于体内 CoQ10 摄取的无创纵向监测
- 批准号:
10829717 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Role of mitochondrial GDAP1 in Alzheimer's disease
线粒体 GDAP1 在阿尔茨海默病中的作用
- 批准号:
10739858 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Dissecting connections between diet, the microbiome and Alzheimers disease
剖析饮食、微生物组和阿尔茨海默病之间的联系
- 批准号:
10740056 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别: