A Novel Class of Enzyme Sensors to Elucidate the Biochemical Responses of Human Nasal Epithelial Cells to Heavy Metals
一类新型酶传感器可阐明人鼻上皮细胞对重金属的生化反应
基本信息
- 批准号:9755727
- 负责人:
- 金额:$ 3.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AsthmaBiochemicalBiochemical ReactionBiologicalBiological AssayCapillary ElectrophoresisCell Membrane PermeabilityCell SurvivalCellsCellular AssayCellular StressChemical ExposureChemicalsCytometryDetectionDevelopmentDiseaseEnzymesEpidermal Growth Factor ReceptorEpithelialEpithelial CellsExposure toFluorescenceFosteringHeavy MetalsHeterogeneityHumanIndividualInflammationInhalationInvestigationIrrigationKineticsKnowledgeMalignant NeoplasmsMeasurementMeasuresMetal exposureMetal feverMethodsModificationMorbidity - disease rateMucous body substanceNormal RangeNoseOccupationalPathway interactionsPeptidesPermeabilityPhosphorylation SitePhosphotransferasesPhysical PerformancePopulationPopulation HeterogeneityPublic HealthReactionReagentRecoveryReporterResearchRouteSample SizeSamplingSignal TransductionSputumStimulusStructure of respiratory epitheliumTechnologyTestingTimeTissuesToxic effectUV Radiation ExposureWorkbasecell behaviorcell typedesignenzyme activityhydrophilicityimprovedinnovationinsightlead ionmortalitynovelnovel strategiesphotoactivationresiliencerespiratoryresponsesample fixationsensorsensor technologysingle cell analysis
项目摘要
7. Project Summary
Heavy metals comprise a major class of chemical exposure agents and have a significant impact on public
health causing morbidity and mortality following environmental, occupational, and/or ambient exposures.1
Inhalation is one of the most common routes for heavy metal exposures, and is known to cause respiratory
inflammation, cancers, metal fume fever, asthma, and reduced physical performance.2-6 Importantly, it is known
that aberrant activity of Akt kinase and/or epidermal growth factor receptor kinase (EGFR) occurs within
respiratory epithelial tissue following exposures to heavy metals.6-9 However, due to the inherent cellular
heterogeneity of cells within the respiratory epithelium and the dynamic responses of single cells to chemical
stimuli;10 the effects of heavy metal exposures on the signaling dynamics on single cells across different cell
types within the respiratory epithelium is unknown.11 Therefore, a single cell analysis technology that can
obtain multiplexed measurements of Akt & EGFR activity in ultra-small samples of primary respiratory epithelial
cells, would improve our understanding of the biochemical mechanisms that underlie heavy metal exposures.
Importantly, such a technology can potentially enable clinicians to identify early warning signs of heavy metal
induced toxicity and/or disease induction in individuals from very small, heterogeneous primary samples.
I aim to improve biochemical investigations of the respiratory epithelium, by employing sensor based chemical
cytometry. Sensor based chemical cytometry is a single cell analysis method in which biomolecular sensors
are used to measure signaling dynamics in small populations of single cells.12-16 Here, I propose the
development of a novel set of fluorescent enzyme sensors to obtain multiplexed measurements of Akt & EGFR
within single cells using capillary electrophoresis employing fluorescence detection (CE-F). I also aim to
improve the design and functionality of the proposed enzyme sensors; by installing photoactivatable moieties
on the phosphorylation sites, I expect to improve membrane permeability of the sensors, and gain control over
the kinase reaction start time within cells.16 Additionally, I plan to control the kinase reaction stop time in cells
by developing a novel chemo-selective reagent which halts intracellular reactions, and facilitates reporter
recovery for analysis via CE-F.
Studies made possible using these novel enzyme sensors will bolster our understanding of the biochemical
mechanisms that govern the induction of disease and/or resilience from ultra-small populations of primary
respiratory epithelial cells. Additionally, the knowledge gained from this proposal would improve our
understanding of the biochemical mechanisms that underlie heavy metal exposures, while identifying novel
strategies to develop cell permeable sensors to achieve temporally controlled reactions within single cells.
7。项目摘要
重金属包括主要的化学暴露剂类别,并对公众产生重大影响
在环境,职业和/或环境暴露后,健康导致发病率和死亡率。1
吸入是重金属暴露的最常见路线之一,已知会引起呼吸系统
炎症,癌症,金属烟气,哮喘和身体表现降低。2-6重要的是,已知
Akt激酶和/或表皮生长因子受体激酶(EGFR)的异常活性发生在
暴露于重金属后的呼吸道上皮组织。6-9然而,由于固有的细胞
细胞在呼吸道上皮内的异质性以及单细胞对化学的动态反应
刺激; 10重金属暴露对信号动力学对单个细胞跨不同细胞的影响
11因此,一种单个细胞分析技术,可以
在原发性上皮的超小样品中获得AKT&EGFR活性的多路复用测量值
细胞将提高我们对重金属暴露基础的生化机制的理解。
重要的是,这样的技术可以使临床医生能够确定重金属的预警信号
来自非常小的,异质的主要样本的个体引起的毒性和/或疾病诱导。
我旨在通过采用基于传感器的化学物质来改善呼吸上皮的生化研究
细胞仪。基于传感器的化学细胞仪是一种单细胞分析方法,其中生物分子传感器
用于测量小单元群中的信号动力学。12-16在这里,我提出了
开发一组新型的荧光酶传感器,以获得Akt&EGFR的多路复用测量
在单个细胞中,使用毛细管电泳采用荧光检测(CE-F)。我也打算
改善所提出的酶传感器的设计和功能;通过安装光活化部分
在磷酸化位点,我希望提高传感器的膜渗透性,并控制
激酶反应在细胞内开始。16我计划控制细胞中的激酶反应停止时间
通过开发一种新型的化学选择性试剂,该试剂停止细胞内反应并促进报告基因
通过CE-F恢复进行分析。
使用这些新型酶传感器进行的研究将增强我们对生化的理解
主导疾病诱导疾病和/或弹性的机制
呼吸上皮细胞。此外,从这一提议中获得的知识将改善我们的
对重金属暴露基础的生化机制的理解,同时识别新型
开发可渗透传感器的策略以实现单个细胞内的时间控制反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew M Anttila其他文献
Matthew M Anttila的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew M Anttila', 18)}}的其他基金
A Novel Class of Enzyme Sensors to Elucidate the Biochemical Responses of Human Nasal Epithelial Cells to Heavy Metals
一类新型酶传感器可阐明人鼻上皮细胞对重金属的生化反应
- 批准号:
10172971 - 财政年份:2019
- 资助金额:
$ 3.68万 - 项目类别:
相似国自然基金
面向拓扑结构的生化反应网络的稳定性分析及稳定化方法研究
- 批准号:62303409
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
页岩油污水厌氧反应器能质输运过程太阳光-热-生化耦合作用机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高固相升流式光生化制氢反应器温度分布特性及均热机理研究
- 批准号:52206244
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水稻降解外源氰化物(CN-)生化反应“热区”定位及靶向调控CN-降解途径的机理研究
- 批准号:42277361
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于热力学的生化反应模型简化理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
- 批准号:
10777339 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
Mrgprb2 mediated neuroinflammation after cerebral ischemia
Mrgprb2介导脑缺血后的神经炎症
- 批准号:
10644182 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10708796 - 财政年份:2022
- 资助金额:
$ 3.68万 - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10521825 - 财政年份:2022
- 资助金额:
$ 3.68万 - 项目类别:
Anaerobic Manufacturing and Molecular Analytical Process Optimization to Support Clinical Development of Live Biotherapeutic Products
厌氧制造和分子分析过程优化支持活生物治疗产品的临床开发
- 批准号:
10482472 - 财政年份:2022
- 资助金额:
$ 3.68万 - 项目类别: