Leveraging cancer-specific defects in nuclear integrity to inform novel synthetic lethal strategies
利用癌症特异性的核完整性缺陷为新型合成致死策略提供信息
基本信息
- 批准号:9886210
- 负责人:
- 金额:$ 18.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAppearanceArchitectureCRISPR interferenceCRISPR screenCancer cell lineCell DeathCell LineCell NucleusCell SurvivalCell divisionCell physiologyCellsCellular biologyCessation of lifeChemicalsChromosomesClustered Regularly Interspaced Short Palindromic RepeatsDNADefectDevelopmentDiagnosisDiagnostic Neoplasm StagingDropoutDrug DesignDrug ScreeningEssential GenesEtiologyExposure toFutureGenesGeneticGenetic Predisposition to DiseaseGoalsHCT116 CellsHuman Cell LineImmune checkpoint inhibitorImmune responseImmune systemImmunotherapyIndividualInnate Immune ResponseInterphaseLamin Type ALeadLinkMalignant NeoplasmsMechanicsMembraneModelingMorphologyMutationNormal CellNuclearNuclear EnvelopeNuclear LaminOncogenicOntologyPathway interactionsProteinsRuptureShapesSignal PathwaySiteSourceStimulator of Interferon GenesStructureSystemSystems BiologyThe Cancer Genome AtlasTissuesTumor Suppressor Proteinsbasecancer cellcancer diagnosiscancer geneticscell transformationcell typecombateffective therapyexperimental studyfitnessgene productgenome-widegenomic datahealingimmune clearanceinhibitor/antagonistinnate immune pathwaysinsightmetaplastic cell transformationneoplastic cellnew therapeutic targetnovelnovel therapeuticspersonalized medicinepotential biomarkerrecruitrepairedresponsescreeningsensorsupport networktumortumorigenesis
项目摘要
Summary
Altered nuclear shape and appearance has long been known to be pathognomonic for cellular transformation;
as a consequence, it is a critical parameter used in cancer diagnosis and tumor grading. Despite an
increasingly mechanistic understanding of oncogenic and tumor suppressor pathways, as well as burgeoning
genomic data that heralds the possibility of personalized treatments, we still lack a firm understanding of the
relationship between nuclear architecture and cancer. In particular, it has yet to be defined if changes in the
nucleus are causal or simply a consequence of transformation. Here, we sidestep this question, and instead
ask: can the changes in nuclear architecture typical of cancer cells be exploited as a liability? Altered nuclear
shape is intimately tied to mechanical defects of the nuclear envelope; recently, such defects have been linked
to either transient or catastrophic losses of nuclear integrity, which can lead to cell death through two potential
mechanisms. First, permanent losses of nuclear integrity are incompatible with cellular viability. Second, even
transient losses of the nuclear barrier expose the DNA to cytoplasmic DNA sensors such as cGAS, which can
drive a STING-dependent innate immune response that, at least in some cases, is sufficient to drive cell-
autonomous death. In the latter case, loss of nuclear integrity also boosts the immune response to the tumor.
Importantly, pathways that recognize and “heal” ruptures of the nuclear envelope have also been recently
defined; perhaps not surprisingly, these repair mechanisms become critical for cell viability in contexts where
nuclear integrity is compromised. Taken together, these new insights make a strong case that further
weakening nuclear integrity in tumor cells can be exploited to drive cell death and immune system recognition.
Here, in Aim 1, we propose to leverage an unbiased, genome-wide CRISPR dropout screen to identify
synthetic lethal interactions of 1) normal cells with either weakened nuclear integrity or defective nuclear repair
mechanisms or 2) cancer cell lines, with and without further compromise of their nuclear integrity pathways. In
Aim 2, we will apply systems level approaches to organize the resulting context-dependent fitness genes into
functional nodes. Beyond the strength of the genetic interaction, targets for in depth analysis will be further
prioritized based on the availability of chemical inhibitors and representation in The Cancer Genome Atlas.
Mechanistic experiments will explicitly examine these high priority synthetic genetic relationships in the context
of nuclear shape, nuclear ruptures, and innate immune pathway activation. Completion of these two Aims will
lead to the development of novel targets that exploit a key pathognomonic structure for cancer.
概括
长期以来,人们都知道核形状和外观的改变是细胞转化的特征。
因此,它是癌症诊断和肿瘤分级中使用的关键参数。
对致癌和肿瘤抑制途径的机械性理解日益加深,以及新兴的
基因组数据预示着个性化治疗的可能性,但我们仍然缺乏对基因组数据的深刻理解
特别是,核结构与癌症之间的关系尚未确定。
核心是因果关系,或者仅仅是转化的结果。在这里,我们回避这个问题,而是回避这个问题。
问:癌细胞典型的核结构变化是否可以被利用为一种责任?
形状与核膜的机械缺陷密切相关,最近,此类缺陷已被联系起来;
核完整性的短暂或灾难性丧失,这可能通过两种潜在的方式导致细胞死亡
首先,核完整性的永久丧失与细胞活力是不相容的。
核屏障的短暂丧失将 DNA 暴露于细胞质 DNA 传感器,例如 cGAS,这可以
驱动依赖于 STING 的先天免疫反应,至少在某些情况下,足以驱动细胞-
在后一种情况下,核完整性的丧失也会增强对肿瘤的免疫反应。
重要的是,最近也发现了识别和“治愈”核膜破裂的途径
定义;也许并不奇怪,这些修复机制在以下情况下对细胞活力至关重要。
总而言之,这些新见解进一步证明了核完整性受到损害。
肿瘤细胞核完整性的减弱可用于驱动细胞死亡和免疫系统识别。
在此,在目标 1 中,我们建议利用公正的全基因组 CRISPR 缺失筛选来识别
1) 核完整性减弱或核修复缺陷的正常细胞的合成致死相互作用
机制或2)癌细胞系,无论是否进一步损害其核完整性途径。
目标 2,我们将应用系统级方法将所得的上下文相关的适应基因组织成
除了基因相互作用的强度之外,深入分析的目标还将进一步确定。
根据化学抑制剂的可用性和癌症基因组图谱中的代表性确定优先顺序。
机制实验将明确地检查背景中这些高优先级的合成遗传关系
核形状、核破裂和先天免疫途径激活的完成将实现这两个目标。
导致开发利用癌症关键特征结构的新靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MEGAN C KING其他文献
MEGAN C KING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MEGAN C KING', 18)}}的其他基金
Remodeling of the structure and function of the nuclear lamina by LINC complex-dependent tension
LINC 复合物依赖性张力重塑核层的结构和功能
- 批准号:
10247783 - 财政年份:2018
- 资助金额:
$ 18.22万 - 项目类别:
Nuclear envelope membrane proteins and nuclear structure
核膜膜蛋白和核结构
- 批准号:
7112750 - 财政年份:2006
- 资助金额:
$ 18.22万 - 项目类别:
Nuclear envelope membrane proteins and nuclear structure
核膜膜蛋白和核结构
- 批准号:
7235342 - 财政年份:2006
- 资助金额:
$ 18.22万 - 项目类别:
相似国自然基金
3D打印物体表面外貌和视觉感知色差表征方法研究
- 批准号:61775170
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
SOX10基因增强子缺失导致白来航蛋鸡羽色变异的分子机制研究
- 批准号:31672409
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
服务接触中外貌刻板印象对消费者响应的影响机制研究:基于社会距离的中介
- 批准号:71602073
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
颜料彩绘文物全外貌信息表征及再现方法研究
- 批准号:61575147
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
观察者特征与目标特征双视角下外貌社会比较的认知神经机制研究
- 批准号:31100758
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
- 批准号:
10634881 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Physiological and Developmental Role of Bacterial Ser/Thr Kinases
细菌丝氨酸/苏氨酸激酶的生理和发育作用
- 批准号:
10501586 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别:
Functional dynamics of TB granuloma architecture
结核肉芽肿结构的功能动力学
- 批准号:
10593978 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别:
Functional dynamics of TB granuloma architecture
结核肉芽肿结构的功能动力学
- 批准号:
10358264 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别: