Leveraging cancer-specific defects in nuclear integrity to inform novel synthetic lethal strategies
利用癌症特异性的核完整性缺陷为新型合成致死策略提供信息
基本信息
- 批准号:9886210
- 负责人:
- 金额:$ 18.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAppearanceArchitectureCRISPR interferenceCRISPR screenCancer cell lineCell DeathCell LineCell NucleusCell SurvivalCell divisionCell physiologyCellsCellular biologyCessation of lifeChemicalsChromosomesClustered Regularly Interspaced Short Palindromic RepeatsDNADefectDevelopmentDiagnosisDiagnostic Neoplasm StagingDropoutDrug DesignDrug ScreeningEssential GenesEtiologyExposure toFutureGenesGeneticGenetic Predisposition to DiseaseGoalsHCT116 CellsHuman Cell LineImmune checkpoint inhibitorImmune responseImmune systemImmunotherapyIndividualInnate Immune ResponseInterphaseLamin Type ALeadLinkMalignant NeoplasmsMechanicsMembraneModelingMorphologyMutationNormal CellNuclearNuclear EnvelopeNuclear LaminOncogenicOntologyPathway interactionsProteinsRuptureShapesSignal PathwaySiteSourceStimulator of Interferon GenesStructureSystemSystems BiologyThe Cancer Genome AtlasTissuesTumor Suppressor Proteinsbasecancer cellcancer diagnosiscancer geneticscell transformationcell typecombateffective therapyexperimental studyfitnessgene productgenome-widegenomic datahealingimmune clearanceinhibitor/antagonistinnate immune pathwaysinsightmetaplastic cell transformationneoplastic cellnew therapeutic targetnovelnovel therapeuticspersonalized medicinepotential biomarkerrecruitrepairedresponsescreeningsensorsupport networktumortumorigenesis
项目摘要
Summary
Altered nuclear shape and appearance has long been known to be pathognomonic for cellular transformation;
as a consequence, it is a critical parameter used in cancer diagnosis and tumor grading. Despite an
increasingly mechanistic understanding of oncogenic and tumor suppressor pathways, as well as burgeoning
genomic data that heralds the possibility of personalized treatments, we still lack a firm understanding of the
relationship between nuclear architecture and cancer. In particular, it has yet to be defined if changes in the
nucleus are causal or simply a consequence of transformation. Here, we sidestep this question, and instead
ask: can the changes in nuclear architecture typical of cancer cells be exploited as a liability? Altered nuclear
shape is intimately tied to mechanical defects of the nuclear envelope; recently, such defects have been linked
to either transient or catastrophic losses of nuclear integrity, which can lead to cell death through two potential
mechanisms. First, permanent losses of nuclear integrity are incompatible with cellular viability. Second, even
transient losses of the nuclear barrier expose the DNA to cytoplasmic DNA sensors such as cGAS, which can
drive a STING-dependent innate immune response that, at least in some cases, is sufficient to drive cell-
autonomous death. In the latter case, loss of nuclear integrity also boosts the immune response to the tumor.
Importantly, pathways that recognize and “heal” ruptures of the nuclear envelope have also been recently
defined; perhaps not surprisingly, these repair mechanisms become critical for cell viability in contexts where
nuclear integrity is compromised. Taken together, these new insights make a strong case that further
weakening nuclear integrity in tumor cells can be exploited to drive cell death and immune system recognition.
Here, in Aim 1, we propose to leverage an unbiased, genome-wide CRISPR dropout screen to identify
synthetic lethal interactions of 1) normal cells with either weakened nuclear integrity or defective nuclear repair
mechanisms or 2) cancer cell lines, with and without further compromise of their nuclear integrity pathways. In
Aim 2, we will apply systems level approaches to organize the resulting context-dependent fitness genes into
functional nodes. Beyond the strength of the genetic interaction, targets for in depth analysis will be further
prioritized based on the availability of chemical inhibitors and representation in The Cancer Genome Atlas.
Mechanistic experiments will explicitly examine these high priority synthetic genetic relationships in the context
of nuclear shape, nuclear ruptures, and innate immune pathway activation. Completion of these two Aims will
lead to the development of novel targets that exploit a key pathognomonic structure for cancer.
概括
长期以来,已知核形状和外观的改变是细胞转化的病理性。
结果,它是癌症诊断和肿瘤分级中使用的关键参数。尽管一个
对致癌和肿瘤抑制途径的越来越机械理解以及迅速发展
预示了个性化治疗可能性的基因组数据,我们仍然缺乏对
核结构与癌症之间的关系。特别是,它尚未定义是否发生变化
核是因果关系,或者仅仅是转化的结果。在这里,我们避开了这个问题,而是
问:癌细胞典型的核体系结构的变化是否可以探讨为责任?核改变
形状与核包膜的机械缺陷密切相关。最近,此类缺陷已链接
核完整性的瞬时或灾难性损失,这可以通过两个潜力导致细胞死亡
机制。首先,核完整性的永久损失与细胞活力不相容。第二,甚至
核屏障的瞬时损失将DNA暴露于CGA等细胞质DNA传感器,可以
驱动依赖于STING的先天免疫响应,至少在某些情况下,足以驱动细胞
自主死亡。在后一种情况下,核完整性的丧失也会增强对肿瘤的免疫冲源。
重要的是,最近识别和“治愈”破裂的途径最近也已经发生了
定义;也许不足为奇,这些维修机制对于在上下文中对于细胞生存能力而言至关重要
核完整性受到损害。综上所述,这些新见解是一个有力的理由
可以探索弱化的肿瘤完整性,以驱动细胞死亡和免疫系统识别。
在这里,在AIM 1中,我们建议利用无偏见的全基因组CRISPR辍学屏幕来识别
1)正常细胞的核完整性或核修复有缺陷的正常细胞的合成致命相互作用
机制或2)癌细胞系,有或没有进一步损害其核完整性途径。在
AIM 2,我们将采用系统级方法来组织产生的上下文依赖性健身基因
功能节点。除了遗传相互作用的强度之外,深度分析的目标将进一步
根据化学抑制剂的可用性和癌症基因组图集中的代表性优先级。
机械实验将在上下文中明确检查这些高优先级合成遗传关系
核形状,核破裂和先天免疫途径激活。这两个目标的完成将
导致开发新目标,从而利用了癌症的关键病理结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MEGAN C KING其他文献
MEGAN C KING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MEGAN C KING', 18)}}的其他基金
Remodeling of the structure and function of the nuclear lamina by LINC complex-dependent tension
LINC 复合物依赖性张力重塑核层的结构和功能
- 批准号:
10247783 - 财政年份:2018
- 资助金额:
$ 18.22万 - 项目类别:
Nuclear envelope membrane proteins and nuclear structure
核膜膜蛋白和核结构
- 批准号:
7112750 - 财政年份:2006
- 资助金额:
$ 18.22万 - 项目类别:
Nuclear envelope membrane proteins and nuclear structure
核膜膜蛋白和核结构
- 批准号:
7235342 - 财政年份:2006
- 资助金额:
$ 18.22万 - 项目类别:
相似国自然基金
3D打印物体表面外貌和视觉感知色差表征方法研究
- 批准号:61775170
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
服务接触中外貌刻板印象对消费者响应的影响机制研究:基于社会距离的中介
- 批准号:71602073
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
SOX10基因增强子缺失导致白来航蛋鸡羽色变异的分子机制研究
- 批准号:31672409
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
颜料彩绘文物全外貌信息表征及再现方法研究
- 批准号:61575147
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
观察者特征与目标特征双视角下外貌社会比较的认知神经机制研究
- 批准号:31100758
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
- 批准号:
10634881 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Physiological and Developmental Role of Bacterial Ser/Thr Kinases
细菌丝氨酸/苏氨酸激酶的生理和发育作用
- 批准号:
10501586 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别:
Functional dynamics of TB granuloma architecture
结核肉芽肿结构的功能动力学
- 批准号:
10593978 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别:
Functional dynamics of TB granuloma architecture
结核肉芽肿结构的功能动力学
- 批准号:
10358264 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别: