Role of the hexosamine biosynthesis pathway in pancreatic cancer.
己糖胺生物合成途径在胰腺癌中的作用。
基本信息
- 批准号:9752256
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-31 至 2020-08-30
- 项目状态:已结题
- 来源:
- 关键词:2-acylglycerol O-acyltransferaseAdenocarcinoma CellAdhesionsAnabolismCancer ModelCell Culture TechniquesCell LineCell membraneCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexDataDevelopmentDiseaseEndoplasmic ReticulumEnzymesFatty AcidsGalactose Binding LectinGenerationsGlucosamineGlucoseGlutamineGlycoproteinsGolgi ApparatusGrowthGrowth Factor ReceptorsGrowth and Development functionHexosaminesIn VitroKRAS2 geneKnock-outLectinLinkMaintenanceMalignant NeoplasmsMalignant neoplasm of pancreasMass Spectrum AnalysisMembraneMembrane ProteinsMetabolicModelingModificationMolecularMonitorMusN-AcetylglucosaminyltransferasesN-Glycosylation SiteNeoplasm MetastasisNutrientNutritionalOncogenicOxygenPancreasPancreatic Ductal AdenocarcinomaPathway interactionsPolysaccharidesProteinsRegulationRoleSerumSignal TransductionSiteStainsStructureTailTestingTransaminasesUp-RegulationUridine Diphosphate N-AcetylglucosamineVeinscell motilitycomparativedetection of nutrientexperimental studyfructose-6-phosphateglucose uptakeglycoproteomicsglycosylationin vivoinsightmigrationmouse modelmutantneoplastic cellnew therapeutic targetnucleotide metabolismpancreatic cancer modelprotein foldingsugartherapeutic targettumortumor growthtumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY
Over 90% of pancreatic ductal adenocarcinomas (PDAC) express mutant KRAS. Expression of mutant
KRAS leads to a number of metabolic changes; for one, cells dramatically increase glucose uptake and
increase flux through the hexosamine biosynthesis pathway (HBP). The HBP produces uridine diphosphate N-
acetylglucosamine (UDP-GlcNAc), the major substrate for N-linked glycosylation. N-glycans are assembled in
the late endoplasmic reticulum and Golgi in part by N-acetylglucosaminyltransferase (MGAT) enzymes, which
modify the sugar structure sequentially, MGAT1 through MGAT5. Specifically, modification by MGAT5 is
responsible for the interaction of membrane surface proteins with the galectin lattice; the greater amount of
interaction with the galectin lattice, the less likely the protein will be endocytosed, allowing for retention of the
protein at the cell membrane. Thus, GlcNAc availability, MGAT enzyme expression, and the number of putative
N-glycosylation sites on a given protein establish which proteins are presented at the membrane and can thus
contribute to downstream signaling within the cell. While both HBP flux and MGAT5 expression are
upregulated in PDAC, the functional impacts of either of these on cancer growth and progression have not
been well studied. I hypothesize that increased HBP flux and glycan branching allows for increased retention of
specific proteins at the membrane, and that expression of MGAT5 is required for PDAC growth and
development. To test this hypothesis, I propose two aims. In the first aim, I will establish the role of increased
HBP flux on localization of proteins to the cell membrane by manipulating KRAS signaling, GFAT1 expression,
or MGAT5 expression and determining exactly what proteins or classes of proteins are changing at the
membrane by N-glycoproteomics. I will also determine the impact of nutritional context on membrane protein
presentation in PDAC cells expressing mutant KRAS vs those expressing WT KRAS. In the second aim, I will
test whether MGAT5 expression is required for PDAC tumor growth and metastasis. To do this, I will first
examine expression of Mgat5 over PDAC development in vivo to determine the relationship between Mgat5
expression and tumor grade. I will then knock out Mgat5 in mouse PDAC cell lines using CRISPR and use
them to establish orthotopic PDAC models through which I will monitor the impact of Mgat5 knockout on tumor
growth and metastasis. These experiments will provide an understanding of the functional impacts of increased
HBP flux and N-glycan branching in PDAC, and provide insight into the development of this disease at the
molecular level, potentially identifying novel therapeutic targets for this deadly disease.
项目摘要
超过90%的胰腺导管腺癌(PDAC)表达突变体Kras。突变体的表达
KRAS导致许多代谢变化。首先,细胞大大增加了葡萄糖摄取和
通过己糖胺生物合成途径(HBP)增加通量。 HBP产生尿苷二磷酸N-
乙酰葡萄糖(UDP-GLCNAC),这是N连接糖基化的主要底物。 n-聚糖组装
晚期内质网和高尔基体部分由N-乙酰基葡萄糖氨基转移酶(MGAT)酶,该酶,该酶,该酶
顺序修改糖结构,通过MGAT5修改MGAT1。具体而言,MGAT5的修改为
负责膜表面蛋白与半乳肠蛋白晶格的相互作用;更多的
与半肠晶格的相互作用,蛋白质的可能性较小,从而允许保留蛋白质
细胞膜的蛋白质。因此,GlcNAC的可用性,MGAT酶表达和推定的数量
给定蛋白上的N-糖基化位点确定了哪些蛋白在膜上呈现,因此可以
有助于细胞内的下游信号传导。而HBP通量和MGAT5表达却是
在PDAC中上调,其中任何一个对癌症生长和进展的功能影响都没有
经过深入研究。我假设增加的HBP通量和聚糖分支可以增加
膜上的特定蛋白质,MGAT5的表达是PDAC生长和
发展。为了检验这一假设,我提出了两个目标。在第一个目标中,我将确定增加的作用
通过操纵KRAS信号传导,GFAT1表达,HBP通量将蛋白质定位到细胞膜上
或MGAT5表达并准确确定哪些蛋白质或类别的蛋白质正在发生变化
N-糖蛋白质组学的膜。我还将确定营养环境对膜蛋白的影响
表达突变体KRAS与表达WT KRA的PDAC细胞中的呈现。在第二个目标中,我会
测试PDAC肿瘤生长和转移是否需要MGAT5表达。为此,我首先
检查MGAT5在体内PDAC开发上的表达,以确定MGAT5之间的关系
表达和肿瘤等级。然后,我将使用CRISPR在鼠标PDAC细胞系中敲出MGAT5并使用
它们建立原位PDAC模型,通过该模型,我将监测MGAT5敲除对肿瘤的影响
生长和转移。这些实验将对增加的功能影响有所了解
PDAC中的HBP通量和N-聚糖分支,并深入了解该疾病的发展
分子水平,可能识别这种致命疾病的新型治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sydney Campbell其他文献
Sydney Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sydney Campbell', 18)}}的其他基金
Role of the hexosamine biosynthesis pathway in pancreatic cancer.
己糖胺生物合成途径在胰腺癌中的作用。
- 批准号:
9327535 - 财政年份:2017
- 资助金额:
$ 4.5万 - 项目类别:
相似国自然基金
HJURP调控PRDX1增加雄激素受体蛋白稳定性导致前列腺癌细胞对恩扎卢胺耐药的机制
- 批准号:82373188
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抑制MRPS21协同Bcl-xL抑制剂诱导前列腺癌细胞合成致死的分子机制研究
- 批准号:82303033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肝细胞源MIF招募CD74+胰腺癌细胞介导非酒精性脂肪肝(NAFLD)驱动的胰腺癌肝转移的机制研究
- 批准号:82303933
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HA依赖的糖被调节乳腺癌细胞膜张力对细胞干性化影响的机制研究
- 批准号:82372710
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
LncRNA-DKFZP434K028调控HNRNPA2B1影响乳腺癌细胞外泌体miR-939的包装和释放促进肿瘤相关巨噬细胞M2极化的分子机制研究
- 批准号:82373043
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
OVERCOMING STROMAL BARRIERS TO THERAPEUTICS IN PANCREAS CANCER
克服胰腺癌治疗的间质障碍
- 批准号:
10682621 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10513140 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
Function of mesothelial cells in the tumor microenvironment of pancreatic ductal adenocarcinoma
间皮细胞在胰腺导管腺癌肿瘤微环境中的功能
- 批准号:
10732793 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别: