Protecting the pRivacy Of Genomes in Research StudieS (PROGRESS)
保护研究中基因组的隐私(进展)
基本信息
- 批准号:8804836
- 负责人:
- 金额:$ 8.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureAwardBiomedical ResearchClinicalCloud ComputingCollectionCommunitiesComplementComputer SimulationComputersDataData AnalysesDevelopmentDiabetes MellitusEngineeringEnvironmentEthnic groupFaceFacultyFamilyFundingGenomeGenomicsGoalsHealthHigh Performance ComputingHumanHuman CharacteristicsHuman GenomeIndividualInstitutionInternetJointsKnowledgeMalignant NeoplasmsMedical ResearchMedicineMethodsMissionModelingNational Human Genome Research InstituteNoisePathway interactionsPatientsPerformancePositioning AttributePredispositionPrivacyProcessPublic HealthResearchResearch PersonnelResourcesRiskSample SizeSchemeSecureSolutionsTechniquesTechnologyTrainingUnited States National Institutes of HealthUniversitiesbiomedical informaticscareercloud basedcohortcostcost effectivedata exchangediagnostic accuracydirect applicationencryptionfallsgenome analysisgenome sequencingimprovedmeetingsnovelparallel computerprogramspublic health relevancepublic trustresearch studysuccesstooltrendweb services
项目摘要
DESCRIPTION (provided by applicant): With the dramatic reduction in the cost of whole genome sequencing (WGS), genomic data are becoming increasingly available and have the potential to advance public health and promote personalized medicine. However, human genomic data usually carry sensitive personal information making data owners cautious about sharing it and genomic privacy is emerging as a big challenge for the entire biomedical community. In this proposal, we will develop novel methods for genomic privacy protection, which will facilitate genomic research. Our first aim is to develop privacy-preserving and efficiency-oriented computational models for processing, sharing, and storing genomic data in a cloud-based environment. This aim relies on scalable cryptographic techniques, joint compression, and encryption schemes, as well as leverage of high-performance computing architecture to achieve privacy-preserving analysis and storage efficiency in the cloud. The second aim is to develop trustworthy computational models that enable researchers to analyze distributed genomic data without requiring patient-level data exchange. These aims are devoted to the mission of the National Human Genome Research Institute (NHGRI) to develop resources and technology that will accelerate genome research and its application to human health. The NIH Pathway to Independence Award provides a great opportunity for the applicant to complement his computer engineering background with biomedical knowledge, and specialized training in genomic analysis, genomic privacy, as well as high-performance computing. It will also allow him to investigate new techniques to advance genomic privacy protection. The success of the proposed project will help his long-term career goal of obtaining a faculty position at a biomedical informatics program at a major US research university and conduct independently funded research in the field of genome privacy.
描述(由申请人提供):随着全基因组测序(WGS)成本的大幅降低,基因组数据变得越来越可用,并且有潜力促进公共卫生和促进个性化医疗。然而,人类基因组数据通常携带敏感的个人信息,使得数据所有者对共享这些信息持谨慎态度,并且基因组隐私正在成为整个生物医学界的一大挑战。 在本提案中,我们将开发基因组隐私保护的新方法,这将促进基因组研究。我们的首要目标是开发隐私保护和以效率为导向的计算模型,用于在基于云的环境中处理、共享和存储基因组数据。这一目标依赖于可扩展的加密技术、联合压缩和加密方案,以及利用高性能计算架构来实现云中的隐私保护分析和存储效率。第二个目标是开发值得信赖的计算模型,使研究人员能够分析分布式基因组数据,而无需进行患者级数据交换。这些目标致力于实现国家人类基因组研究所 (NHGRI) 的使命,即开发资源和技术,加速基因组研究及其在人类健康中的应用。 NIH 独立之路奖为申请人提供了一个绝佳的机会,可以用生物医学知识以及基因组分析、基因组隐私和高性能计算方面的专业培训来补充其计算机工程背景。它还将使他能够研究新技术以推进基因组隐私保护。该项目的成功将有助于他的长期职业目标,即获得美国一所主要研究型大学生物医学信息学项目的教职,并在基因组隐私领域进行独立资助的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuang Wang其他文献
Shuang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuang Wang', 18)}}的其他基金
Hepatic stellate cell plasticity and maladaptive fibrogenic memory in chronic liver disease
慢性肝病中的肝星细胞可塑性和适应不良纤维化记忆
- 批准号:
10638234 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Wearable elastography for ambulatory monitoring of tissue mechanics
用于组织力学动态监测的可穿戴弹性成像
- 批准号:
10726529 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
CRCNS: Dense longitudinal neuroimaging to evaluate learning in childhood
CRCNS:密集纵向神经影像评估儿童学习情况
- 批准号:
10835136 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别: